CheekAge, a next-generation epigenetic buccal clock, is predictive of mortality in human blood

被引:1
作者
Shokhirev, Maxim N. [1 ]
Kramer, Daniel J. [1 ]
Corley, Janie [2 ]
Cox, Simon R. [2 ]
Cuellar, Trinna L. [1 ]
Johnson, Adiv A. [1 ]
机构
[1] Tally Hlth, New York, NY 10003 USA
[2] Univ Edinburgh, Dept Psychol, Lothian Birth Cohorts, Edinburgh, Scotland
来源
FRONTIERS IN AGING | 2024年 / 5卷
基金
英国生物技术与生命科学研究理事会; 英国惠康基金; 英国经济与社会研究理事会; 英国医学研究理事会;
关键词
DNA methylation; mortality; epigenetic aging clock; biomarker; aging; longitudinal; TISSUE;
D O I
10.3389/fragi.2024.1460360
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
While earlier first-generation epigenetic aging clocks were trained to estimate chronological age as accurately as possible, more recent next-generation clocks incorporate DNA methylation information more pertinent to health, lifestyle, and/or outcomes. Recently, we produced a non-invasive next-generation epigenetic clock trained using Infinium MethylationEPIC data from more than 8,000 diverse adult buccal samples. While this clock correlated with various health, lifestyle, and disease factors, we did not assess its ability to capture mortality. To address this gap, we applied CheekAge to the longitudinal Lothian Birth Cohorts of 1921 and 1936. Despite missing nearly half of its CpG inputs, CheekAge was significantly associated with mortality in this longitudinal blood dataset. Specifically, a change in one standard deviation corresponded to a hazard ratio (HR) of 1.21 (FDR q = 1.66e-6). CheekAge performed better than all first-generation clocks tested and displayed a comparable HR to the next-generation, blood-trained DNAm PhenoAge clock (HR = 1.23, q = 2.45e-9). To better understand the relative importance of each CheekAge input in blood, we iteratively removed each clock CpG and re-calculated the overall mortality association. The most significant effect came from omitting the CpG cg14386193, which is annotated to the gene ALPK2. Excluding this DNA methylation site increased the FDR value by nearly threefold (to 4.92e-06). We additionally performed enrichment analyses of the top annotated CpGs that impact mortality to better understand their associated biology. Taken together, we provide important validation for CheekAge and highlight novel CpGs that underlie a newly identified mortality association.
引用
收藏
页数:8
相关论文
共 42 条
  • [1] The Gene Ontology knowledgebase in 2023
    Aleksander, Suzi A.
    Balhoff, James
    Carbon, Seth
    Cherry, J. Michael
    Drabkin, Harold J.
    Ebert, Dustin
    Feuermann, Marc
    Gaudet, Pascale
    Harris, Nomi L.
    Hill, David P.
    Lee, Raymond
    Mi, Huaiyu
    Moxon, Sierra
    Mungall, Christopher J.
    Muruganugan, Anushya
    Mushayahama, Tremayne
    Sternberg, Paul W.
    Thomas, Paul D.
    Van Auken, Kimberly
    Ramsey, Jolene
    Siegele, Deborah A.
    Chisholm, Rex L.
    Fey, Petra
    Aspromonte, Maria Cristina
    Nugnes, Maria Victoria
    Quaglia, Federica
    Tosatto, Silvio
    Giglio, Michelle
    Nadendla, Suvarna
    Antonazzo, Giulia
    Attrill, Helen
    dos Santos, Gil
    Marygold, Steven
    Strelets, Victor
    Tabone, Christopher J.
    Thurmond, Jim
    Zhou, Pinglei
    Ahmed, Saadullah H.
    Asanitthong, Praoparn
    Luna Buitrago, Diana
    Erdol, Meltem N.
    Gage, Matthew C.
    Ali Kadhum, Mohamed
    Li, Kan Yan Chloe
    Long, Miao
    Michalak, Aleksandra
    Pesala, Angeline
    Pritazahra, Armalya
    Saverimuttu, Shirin C. C.
    Su, Renzhi
    [J]. GENETICS, 2023, 224 (01)
  • [2] Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays
    Aryee, Martin J.
    Jaffe, Andrew E.
    Corrada-Bravo, Hector
    Ladd-Acosta, Christine
    Feinberg, Andrew P.
    Hansen, Kasper D.
    Irizarry, Rafael A.
    [J]. BIOINFORMATICS, 2014, 30 (10) : 1363 - 1369
  • [3] DNA methylation aging clocks: challenges and recommendations
    Bell, Christopher G.
    Lowe, Robert
    Adams, Peter D.
    Baccarelli, Andrea A.
    Beck, Stephan
    Bell, Jordana T.
    Christensen, Brock C.
    Gladyshev, Vadim N.
    Heijmans, Bastiaan T.
    Horvath, Steve
    Ideker, Trey
    Issa, Jean-Pierre J.
    Kelsey, Karl T.
    Marioni, Riccardo E.
    Reik, Wolf
    Relton, Caroline L.
    Schalkwyk, Leonard C.
    Teschendorff, Andrew E.
    Wagner, Wolfgang
    Zhang, Kang
    Rakyan, Vardhman K.
    [J]. GENOME BIOLOGY, 2019, 20 (01)
  • [4] Atypical ALPK2 kinase is not essential for cardiac development and function
    Bogomolovas, Julius
    Feng, Wei
    Yu, Matthew Daniel
    Huang, Serena
    Zhang, Lunfeng
    Trexler, Christa
    Gu, Yusu
    Spinozzi, Simone
    Chen, Ju
    [J]. AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2020, 318 (06): : H1509 - H1515
  • [5] Chemical activation of SAT1 corrects diet-induced metabolic syndrome
    Castoldi, Francesca
    Hyvonen, Mervi T.
    Durand, Sylvere
    Aprahamian, Fanny
    Sauvat, Allan
    Malik, Shoaib A.
    Baracco, Elisa Elena
    Vacchelli, Erika
    Opolon, Paule
    Signolle, Nicolas
    Lefevre, Deborah
    Bossut, Noelie
    Eisenberg, Tobias
    Dammbrueck, Christopher
    Pendl, Tobias
    Kremer, Margerie
    Lachkar, Sylvie
    Einer, Claudia
    Michalke, Bernhard
    Zischka, Hans
    Madeo, Frank
    Keinanen, Tuomo A.
    Maiuri, Maria Chiara
    Pietrocola, Federico
    Kroemer, Guido
    [J]. CELL DEATH AND DIFFERENTIATION, 2020, 27 (10) : 2904 - 2920
  • [6] α-Kinase 2 is a novel candidate gene for inherited hypertension in Dahl rats
    Chauvet, Cristina
    Crespo, Kimberley
    Menard, Annie
    Wu, Yanrui
    Xiao, Chunjie
    Blain, Marilyne
    Roy, Julie
    Deng, Alan Y.
    [J]. JOURNAL OF HYPERTENSION, 2011, 29 (07) : 1320 - 1326
  • [7] The lipid elongation enzyme ELOVL2 is a molecular regulator of aging in the retina
    Chen, Daniel
    Chao, Daniel L.
    Rocha, Lorena
    Kolar, Matthew
    Viet Anh Nguyen Huu
    Krawczyk, Michal
    Dasyani, Manish
    Wang, Tina
    Jafari, Maryam
    Jabari, Mary
    Ross, Kevin D.
    Saghatelian, Alan
    Hamilton, Bruce A.
    Zhang, Kang
    Skowronska-Krawczyk, Dorota
    [J]. AGING CELL, 2020, 19 (02)
  • [8] Cohort Profile: The Lothian Birth Cohorts of 1921 and 1936
    Deary, Ian J.
    Gow, Alan J.
    Pattie, Alison
    Starr, John M.
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2012, 41 (06) : 1576 - 1584
  • [9] WebGestalt 2024: faster gene set analysis and new support for metabolomics and multi-omics
    Elizarraras, John M.
    Liao, Yuxing
    Shi, Zhiao
    Zhu, Qian
    Pico, Alexander R.
    Zhang, Bing
    [J]. NUCLEIC ACIDS RESEARCH, 2024, 52 (W1) : W415 - W421
  • [10] Genome-wide Methylation Profiles Reveal Quantitative Views of Human Aging Rates
    Hannum, Gregory
    Guinney, Justin
    Zhao, Ling
    Zhang, Li
    Hughes, Guy
    Sadda, SriniVas
    Klotzle, Brandy
    Bibikova, Marina
    Fan, Jian-Bing
    Gao, Yuan
    Deconde, Rob
    Chen, Menzies
    Rajapakse, Indika
    Friend, Stephen
    Ideker, Trey
    Zhang, Kang
    [J]. MOLECULAR CELL, 2013, 49 (02) : 359 - 367