An omnidirectional piezoelectric energy harvester coupling vortex-induced vibration and wake galloping

被引:0
|
作者
Li, Wenhui [1 ]
Wang, Guotai [1 ]
Yang, Chongqiu [1 ]
Yang, Xiaohui [1 ]
Song, Rujun [1 ]
机构
[1] Shandong Univ Technol, Sch Mech Engn, Zibo, Peoples R China
关键词
vortex-induced vibration; wake galloping; omnidirectional; piezoelectric energy harvester; wind energy harvesting;
D O I
10.1088/1361-665X/adaa40
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
This paper proposes an omnidirectional piezoelectric energy harvester coupling vortex-induced vibration and wake galloping (OPEH-VW), converting wind energy into electrical energy. The vibration behavior of the OPEH-VW is explored by changing the spacing ratio (L/D) and the diameter of the wind cylinder at the end of the cantilever beam. When the wind does not blow directly onto the device, it will rotate due to the imbalance of forces on both sides of wind cylinder B until reaching a state of equilibrium, causing the device to stop rotating, achieving omnidirectional functionality. And at this state, the efficiency of wind energy collection is highest. The results show that when the two wind cylinders of the same diameter were placed in series, at low wind speeds, vortex-induced vibration (VIV) was observed. As wind speed increases, continuous VIV and wake galloping (WG) phenomena appeared at a spacing ratio of 3.5, while only WG was occurred at the other three spacing ratios. And if the two wind cylinders placed in series replaced to different diameters, the OPEH-VW behaved as a bi-stable system with two resonance frequencies. The output power increased with the wind speed within a certain range and raised to peaks twice.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] A Piezoelectric Wind Energy Harvester with Interaction Between Vortex-Induced Vibration and Galloping
    Yang, Xiaokang
    He, Xuefeng
    2019 IEEE SENSORS, 2019,
  • [2] Enhanced performance of cutting angle cylinder piezoelectric energy harvester via coupling vortex-induced vibration and galloping
    Wang, Junlei
    Xia, Bing
    Yurchenko, Daniil
    Tian, Haigang
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 205
  • [3] Design and simulation investigation of piezoelectric energy harvester under wake-induced vibration coupling vortex-induced vibration
    Meng, Jinpeng
    Fu, Xingwen
    Yang, Chongqiu
    Zhang, Leian
    Yang, Xianhai
    Song, Rujun
    FERROELECTRICS, 2021, 585 (01) : 128 - 138
  • [4] An in-plane omnidirectional piezoelectric wind energy harvester based on vortex-induced vibration
    Li, Shen
    He, Xuefeng
    Li, Jiajie
    Feng, Zhiqiang
    Yang, Xiaokang
    Li, Jinghua
    APPLIED PHYSICS LETTERS, 2022, 120 (04)
  • [5] Design and Modeling of a Magnetic-Coupling Monostable Piezoelectric Energy Harvester Under Vortex-Induced Vibration
    Hou, Chengwei
    Shan, Xiaobiao
    Zhang, Leian
    Song, Rujun
    Yang, Zhengbao
    IEEE ACCESS, 2020, 8 : 108913 - 108927
  • [6] Modeling and experimental study of piezoelectric energy harvester under vortex-induced vibration
    Song R.
    Shan X.
    Li J.
    Xie T.
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2016, 50 (02): : 55 - 60and79
  • [7] Numerical investigation of piezoelectric energy harvester characteristics based on vortex-induced vibration
    Wang, Jun-Lei
    Ran, Jing-Yu
    Ding, Lin
    Zhang, Min
    Zhang, Li
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2015, 36 (02): : 330 - 334
  • [8] Geometrically nonlinear wind-induced vibration piezoelectric energy harvester based on vortex-induced vibration
    Qiu, Jian
    Yuan, Xingquan
    Lv, Qiaoya
    Xu, Hanpei
    Li, Dongling
    Wen, Quan
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2024,
  • [9] Theoretical analysis of a vibration-magnetic piezoelectric energy harvester scavenging for vortex-induced vibration
    Hou, Chengwei
    Li, Chunhui
    Yang, Chongqiu
    Yang, Xianhai
    Zhang, Leian
    Song, Rujun
    FERROELECTRICS, 2021, 582 (01) : 141 - 154
  • [10] A PIEZOELECTRIC ENERGY HARVESTER WITH VORTEX INDUCED VIBRATION
    Song, Ru-jun
    Shan, Xiao-biao
    Li, Jin-zhe
    Xie, Tao
    Sun, Qi-gang
    PROCEEDINGS OF THE 2015 SYMPOSIUM ON PIEZOELECTRICITY, ACOUSTIC WAVES AND DEVICE APPLICATIONS, 2015, : 322 - 325