Transformer-Based Skin Carcinoma Classification using Histopathology Images via Incremental Learning

被引:0
作者
Imran, Muhammad [1 ]
Akram, Muhammad Usman [2 ]
Salam, Anum Abdul [2 ]
机构
[1] Natl Univ Sci & Technol, Dept Mechatron Engr, Islamabad, Pakistan
[2] Natl Univ Sci & Technol, Dept Comp & Software Engr, Islamabad, Pakistan
来源
2024 14TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION SYSTEMS, ICPRS | 2024年
关键词
Biomedical image analysis; incremental image classification; transformer; computational pathology; skin cancer; DERMATOLOGISTS;
D O I
10.1109/ICPRS62101.2024.10677812
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work introduces an innovative transformer-based technique for the classification of non-melanoma skin cancer by the analysis of histopathology images in an incremental learning setting. AI, particularly with the emergence of deep learning and CNN models, have been very impactful in the past decade for medical image analysis. Consequently, research has also emerged for the diagnosis of skin cancer but mostly based on dermoscopic or clinical images. Skin cancer is, however, diagnosed by pathologists after a critical evaluation of histopathology slides extracted through biopsies. The availability of large-scale labelled datasets of histopathology images for the training of models is a challenge which can be resolved by incremental learning and the models can be incrementally trained with the availability of new data or on the discovery of a new disease. Moreover, transformer-based image analysis approaches, with their ability to capture global context, have recently demonstrated superior performance. Considering histopathology slides as the gold standard for skin cancer diagnosis this research, therefore, employs a novel transformer-based classification approach in an incremental learning setting to classify multi-class skin cancer. The method has been validated using a recently published histopathology dataset with superior classification results in comparison with known models.
引用
收藏
页数:7
相关论文
共 34 条
[1]   Memory Aware Synapses: Learning What (not) to Forget [J].
Aljundi, Rahaf ;
Babiloni, Francesca ;
Elhoseiny, Mohamed ;
Rohrbach, Marcus ;
Tuytelaars, Tinne .
COMPUTER VISION - ECCV 2018, PT III, 2018, 11207 :144-161
[2]   Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task [J].
Brinker, Titus J. ;
Hekler, Achim ;
Enk, Alexander H. ;
Klode, Joachim ;
Hauschild, Axel ;
Berking, Carola ;
Schilling, Bastian ;
Haferkamp, Sebastian ;
Schadendorf, Dirk ;
Holland-Letz, Tim ;
Utikal, Jochen S. ;
von Kalle, Christof .
EUROPEAN JOURNAL OF CANCER, 2019, 113 :47-54
[3]   A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task [J].
Brinker, Titus J. ;
Hekler, Achim ;
Enk, Alexander H. ;
Klode, Joachim ;
Hauschild, Axel ;
Berking, Carola ;
Schilling, Bastian ;
Haferkamp, Sebastian ;
Schadendorf, Dirk ;
Froehling, Stefan ;
Utikal, Jochen S. ;
von Kalle, Christof ;
Ludwig-Peitsch, Wiebke ;
Sirokay, Judith ;
Heinzerling, Lucie ;
Albrecht, Magarete ;
Baratella, Katharina ;
Bischof, Lena ;
Chorti, Eleftheria ;
Dith, Anna ;
Drusio, Christina ;
Giese, Nina ;
Gratsias, Emmanouil ;
Griewank, Klaus ;
Hallasch, Sandra ;
Hanhart, Zdenka ;
Herz, Saskia ;
Hohaus, Katja ;
Jansen, Philipp ;
Jockenhoefer, Finja ;
Kanaki, Theodora ;
Knispel, Sarah ;
Leonhard, Katja ;
Martaki, Anna ;
Matei, Liliana ;
Matull, Johanna ;
Olischewski, Alexandra ;
Petri, Maximilian ;
Placke, Jan-Malte ;
Raub, Simon ;
Salva, Katrin ;
Schlott, Swantje ;
Sody, Elsa ;
Steingrube, Nadine ;
Stoffels, Ingo ;
Ugurel, Selma ;
Sondermann, Wiebke ;
Zaremba, Anne ;
Gebhardt, Christoffer ;
Booken, Nina .
EUROPEAN JOURNAL OF CANCER, 2019, 111 :148-154
[4]   An Attentive Survey of Attention Models [J].
Chaudhari, Sneha ;
Mithal, Varun ;
Polatkan, Gungor ;
Ramanath, Rohan .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2021, 12 (05)
[5]   Learning without Memorizing [J].
Dhar, Prithviraj ;
Singh, Rajat Vikram ;
Peng, Kuan-Chuan ;
Wu, Ziyan ;
Chellappa, Rama .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :5133-5141
[6]  
Dosovitskiy A, 2021, Arxiv, DOI arXiv:2010.11929
[7]   Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017 A Systematic Analysis for the Global Burden of Disease Study [J].
Fitzmaurice, Christina ;
Abate, Degu ;
Abbasi, Naghmeh ;
Abbastabar, Hedayat ;
Abd-Allah, Foad ;
Abdel-Rahman, Omar ;
Abdelalim, Ahmed ;
Abdoli, Amir ;
Abdollahpour, Ibrahim ;
Abdulle, Abdishakur S. M. ;
Abebe, Nebiyu Dereje ;
Abraha, Haftom Niguse ;
Abu-Raddad, Laith Jamal ;
Abualhasan, Ahmed ;
Adedeji, Isaac Akinkunmi ;
Advani, Shailesh M. ;
Afarideh, Mohsen ;
Afshari, Mandi ;
Aghaali, Mohammad ;
Agius, Dominic ;
Agrawal, Sutapa ;
Ahmadi, Ayat ;
Ahmadian, Elham ;
Ahmadpour, Ehsan ;
Ahmed, Muktar Beshir ;
Akbari, Mohammad Esmaeil ;
Akinyemiju, Tomi ;
Al-Aly, Ziyad ;
AlAbdulKader, Assim M. ;
Alandab, Fares ;
Alam, Tahiya ;
Alamene, Genet Melak ;
Alemnew, Birhan Tamene T. ;
Alene, Kefyalew Addis ;
Alinia, Cyrus ;
Alipour, Vahid ;
Aljunid, Syed Mohamed ;
Bakeshei, Fatemeh Allah ;
Abdulrahman, Majid ;
Almadi, Hamad ;
Almasi-Hashiani, Amir ;
Alsharif, Ubai ;
Alsowaidi, Shirina ;
Alvis-Guzman, Nelson ;
Amini, Erfan ;
Amini, Saeed ;
Amoako, Yaw Ampem ;
Anbari, Zohreh ;
Anber, Nahla Hamed ;
Andrei, Catalina Liliana .
JAMA ONCOLOGY, 2019, 5 (12) :1749-1768
[8]   Catastrophic forgetting in connectionist networks [J].
French, RM .
TRENDS IN COGNITIVE SCIENCES, 1999, 3 (04) :128-135
[9]   Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis [J].
Fujisawa, Y. ;
Otomo, Y. ;
Ogata, Y. ;
Nakamura, Y. ;
Fujita, R. ;
Ishitsuka, Y. ;
Watanabe, R. ;
Okiyama, N. ;
Ohara, K. ;
Fujimoto, M. .
BRITISH JOURNAL OF DERMATOLOGY, 2019, 180 (02) :373-381
[10]   Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists [J].
Haenssle, H. A. ;
Fink, C. ;
Schneiderbauer, R. ;
Toberer, F. ;
Buhl, T. ;
Blum, A. ;
Kalloo, A. ;
Hassens, A. Ben Hadj ;
Thomas, L. ;
Enk, A. ;
Uhlmann, L. .
ANNALS OF ONCOLOGY, 2018, 29 (08) :1836-1842