Deep characteristic learning model for real-time flow monitoring based on H-ADCP

被引:0
作者
Li, Yu [1 ]
Zhao, Xin [1 ]
Wang, Yibo [1 ]
Zeng, Ling [1 ]
机构
[1] Changjiang Water Resources Commiss, Bur Hydrol, Wuhan 430010, Peoples R China
关键词
Deep characteristic learning; H-ADCP; Real-time flow monitoring; Intelligent algorithms; LINEAR-REGRESSION; RIVER; PREDICTION; ANN;
D O I
10.1016/j.ejrh.2024.102115
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
Study region: The Luohu hydrological station, located in southeastern China, which has unstable water level- discharge relationship caused by tides. Study focus: Real-time flow monitoring based on horizontal-acoustic Doppler current profiler (HADCP), which remains insufficient to deal with low monitoring accuracy, complex flow characteristics, and large data volumes caused by the construction and operation of hydraulic engineering, backwater, tides, siltation changes, and high-frequency monitoring. This study proposed a deep characteristic learning (DCL) model to identify and extract the nonlinear characteristics between flow velocity of H-ADCP cell and river cross section by incorporating multiple intelligent algorithms. New hydrological insights for the region: The DCL model performs efficiently with a determination coefficient (R2) of 0.93 between the simulated and observed discharge, which is obviously better than the single intelligent algorithm-based models. The DCL model allows for adaptive algorithm selection and parameter adjustment according to the characteristics of river cross section and HADCP data. It shows strong self-learning capability and good simulation accuracy even with few training samples. Additionally, the DCL model is demonstrated to be stable and applicable in terms of model structure and practical performance. This study can serve as a reference for realtime flow monitoring under complex hydrological conditions.
引用
收藏
页数:12
相关论文
共 38 条
[1]  
Ablikim M, 2020, Arxiv, DOI [arXiv:1905.09001, DOI 10.14006/J.JZJGXB.2024.0089, 10.11924/j.issn.1000-6850.casb17060113, DOI 10.11924/J.ISSN.1000-6850.CASB17060113]
[2]   Direct measurement of the branching fraction for D+→(K)over-bar0 μ+νμ and determination of Γ(D0→K-μ+ νμ)/Γ (D+→(K)over-bar0 μ+ νμ) [J].
Ablikim, M. ;
Bai, J. Z. ;
Ban, Y. ;
Cai, X. ;
Chen, H. F. ;
Chen, H. S. ;
Chen, H. X. ;
Chen, J. C. ;
Chen, Jin ;
Chen, Y. B. ;
Chu, Y. P. ;
Dai, Y. S. ;
Diao, L. Y. ;
Deng, Z. Y. ;
Dong, Q. F. ;
Du, S. X. ;
Fang, J. ;
Fang, S. S. ;
Fu, C. D. ;
Gao, C. S. ;
Gao, Y. N. ;
Gu, S. D. ;
Gu, Y. T. ;
Guo, Y. N. ;
He, K. L. ;
He, M. ;
Heng, Y. K. ;
Hou, J. ;
Hu, H. M. ;
Hu, J. H. ;
Hu, T. ;
Huang, X. T. ;
Ji, X. B. ;
Jiang, X. S. ;
Jiang, X. Y. ;
Jiao, J. B. ;
Jin, D. P. ;
Jin, S. ;
Lai, Y. F. ;
Li, G. ;
Li, H. B. ;
Li, J. ;
Li, R. Y. ;
Li, S. M. ;
Li, W. D. ;
Li, W. G. ;
Li, X. L. ;
Li, X. N. ;
Li, X. Q. ;
Liang, Y. F. .
PHYSICS LETTERS B, 2007, 644 (01) :20-24
[3]   Applying ADCPs for Long-Term Monitoring of SSC in Rivers [J].
Aleixo, Rui ;
Guerrero, Massimo ;
Nones, Michael ;
Ruther, Nils .
WATER RESOURCES RESEARCH, 2020, 56 (01)
[4]   Accurate Open Channel Flowrate Estimation Using 2D RANS Modelization and ADCP Measurements [J].
Alfonso Figuerez, Juan ;
Gonzalez, Javier ;
Galan, Alvaro .
WATER, 2021, 13 (13)
[5]   Effects of Land Use and Cropping on Soil Erosion in Agricultural Frontier Areas in the Cerrado-Amazon Ecotone, Brazil, Using a Rainfall Simulator Experiment [J].
Alves, Marco Aurelio Barbosa ;
de Souza, Adilson Pacheco ;
de Almeida, Frederico Terra ;
Hoshide, Aaron Kinyu ;
Araujo, Handrey Borges ;
da Silva, Apoliano Francisco ;
de Carvalho, Daniel Fonseca .
SUSTAINABILITY, 2023, 15 (06)
[6]   Prediction of river discharges at confluences based on Entropy theory and surface-velocity measurements [J].
Bahmanpouri, Farhad ;
Barbetta, Silvia ;
Gualtieri, Carlo ;
Ianniruberto, Marco ;
Filizola, Naziano ;
Termini, Donatella ;
Moramarco, Tommaso .
JOURNAL OF HYDROLOGY, 2022, 606
[7]  
Bishop C. M., 2006, Pattern Recognition and Machine Learning, V4
[8]  
Burgan HI, 2022, FRESEN ENVIRON BULL, V31, P4699
[9]  
Deng Y, 2014, INTERNATIONAL CONFERENCE ON ELECTRONIC AND ELECTRICAL ENGINEERING (CEEE 2014), P7
[10]   Validation of an Uncertainty Propagation Method for Moving-Boat Acoustic Doppler Current Profiler Discharge Measurements [J].
Despax, Aurelien ;
Le Coz, Jerome ;
Mueller, David S. S. ;
Hauet, Alexandre ;
Calmel, Blaise ;
Pierrefeu, Gilles ;
Naudet, Gregoire ;
Blanquart, Bertrand ;
Pobanz, Karine .
WATER RESOURCES RESEARCH, 2023, 59 (01)