共 32 条
- [1] Szegedy C., Zaremba W., Sutskever I., Bruna J., Erhan D., Goodfellow I., Fergus R., Intriguing Properties of Neural Networks, Proceedings of the International Conference on Learning Representations
- [2] Goodfellow I., Shlens J., Szegedy C., Explaining and Harnessing Adversarial Examples, Proceedings of the International Conference on Learning Representations
- [3] Xie C., Wang J., Zhang Z., Zhou Y., Xie L., Yuille A., Adversarial Examples for Semantic Segmentation and Object Detection, Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), pp. 1378-1387, (2017)
- [4] Wu H., Yunas S., Rowlands S., Ruan W., Wahlstrom J., Adversarial Driving: Attacking End-to-End Autonomous Driving, Proceedings of the 2023 IEEE Intelligent Vehicles Symposium (IV), pp. 1-7
- [5] Bountakas P., Zarras A., Lekidis A., Xenakis C., Defense Strategies for Adversarial Machine Learning: A Survey, Comput. Sci. Rev, 49, (2023)
- [6] Shafahi A., Najibi M., Ghiasi A., Xu Z., Dickerson J., Studer C., Davis L.S., Taylor G., Goldstein T., Adversarial Training for Free!, Proceedings of the 33rd International Conference on Neural Information Processing Systems, pp. 3358-3369, (2019)
- [7] Nie W., Guo B., Huang Y., Xiao C., Vahdat A., Anandkumar A., Diffusion Models for Adversarial Purification, Proceedings of the International Conference on Machine Learning
- [8] Xu W., Evans D., Qi Y., Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks, Proceedings of the 2018 Network and Distributed System Security Symposium
- [9] Aldahdooh A., Hamidouche W., Fezza S.A., Deforges O., Adversarial Example Detection for DNN Models: A Review and Experimental Comparison, Artif. Intell. Rev, 55, pp. 4403-4462, (2022)
- [10] Liu J., Zhang W., Zhang Y., Hou D., Liu Y., Zha H., Yu N., Detection Based Defense Against Adversarial Examples from the Steganalysis Point of View, Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4820-4829, (2019)