Local second order regularity of solutions to elliptic Orlicz-Laplace equation
被引:0
作者:
Karppinen, Arttu
论文数: 0引用数: 0
h-index: 0
机构:
Univ Warsaw, Fac Math Informat & Mech, Ul Banacha 2, PL-02097 Warsaw, PolandUniv Warsaw, Fac Math Informat & Mech, Ul Banacha 2, PL-02097 Warsaw, Poland
Karppinen, Arttu
[1
]
Sarsa, Saara
论文数: 0引用数: 0
h-index: 0
机构:
Univ Jyvaskyla, Dept Math & Stat, POB 35, FI-40014 Jyvaskyla, FinlandUniv Warsaw, Fac Math Informat & Mech, Ul Banacha 2, PL-02097 Warsaw, Poland
Sarsa, Saara
[2
]
机构:
[1] Univ Warsaw, Fac Math Informat & Mech, Ul Banacha 2, PL-02097 Warsaw, Poland
[2] Univ Jyvaskyla, Dept Math & Stat, POB 35, FI-40014 Jyvaskyla, Finland
We consider Orlicz-Laplace equation - div ( '(|del|) |del| del ) = where is an Orlicz function and either = 0 or is an element of infinity . We prove local second order regularity results for the weak solutions of the Orlicz-Laplace equation. More precisely, we show that if is another Orlicz function that is close to in a suitable sense, then '(|del|) |del| del is an element of 1,2 loc . This work contributes to the building up of quantitative second order Sobolev regularity for solutions of nonlinear equations.