Superpixel-Informed Implicit Neural Representation for Multi-dimensional Data

被引:0
作者
Li, Jiayi [1 ]
Zhao, Xile [1 ]
Wang, Jianli [2 ]
Wane, Chao [3 ]
Wane, Min [4 ]
机构
[1] Univ Elect Sci & Technol China, Chengdu, Peoples R China
[2] Southwest Jiaotong Univ, Chengdu, Peoples R China
[3] Southern Univ Sci & Technol, Shenzhen, Peoples R China
[4] Jiangxi Univ Finance & Econ, Nanchang, Jiangxi, Peoples R China
来源
COMPUTER VISION - ECCV 2024, PT II | 2025年 / 15060卷
关键词
Multi-Dimensional Data; Implicit Neural Representation; Superpixel; UNIFYING FRAMEWORK; KERNEL;
D O I
10.1007/978-3-031-72627-9_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, implicit neural representations (INRs) have attracted increasing attention for multi-dimensional data recovery. However, INRs simply map coordinates via a multi-layer perceptron (MLP) to corresponding values, ignoring the inherent semantic information of the data. To leverage semantic priors from the data, we propose a novel Superpixel-informed INR (S-INR). Specifically, we suggest utilizing generalized superpixel instead of pixel as an alternative basic unit of INR for multi-dimensional data (e.g., images and weather data). The coordinates of generalized superpixels are first fed into exclusive attention-based MLPs, and then the intermediate results interact with a shared dictionary matrix. The elaborately designed modules in S-INR allow us to ingenuously exploit the semantic information within and across generalized superpixels. Extensive experiments on various applications validate the effectiveness and efficacy of our S-INR compared to state-of-the-art INR methods.
引用
收藏
页码:258 / 276
页数:19
相关论文
共 53 条
[41]   CoIL: Coordinate-Based Internal Learning for Tomographic Imaging [J].
Sun, Yu ;
Liu, Jiaming ;
Xie, Mingyang ;
Wohlberg, Brendt ;
Kamilov, Ulugbek .
IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2021, 7 :1400-1412
[42]  
Tancik M., 2020, ADV NEURAL INFORM PR, V33, P7537, DOI DOI 10.48550/ARXIV.2006.10739
[43]  
Tin Kam Ho, 1995, Proceedings of the Third International Conference on Document Analysis and Recognition, P278, DOI 10.1109/ICDAR.1995.598994
[44]   Deep Image Prior [J].
Ulyanov, Dmitry ;
Vedaldi, Andrea ;
Lempitsky, Victor .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :9446-9454
[45]   Image quality assessment: From error visibility to structural similarity [J].
Wang, Z ;
Bovik, AC ;
Sheikh, HR ;
Simoncelli, EP .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2004, 13 (04) :600-612
[46]   NeuTex: Neural Texture Mapping for Volumetric Neural Rendering [J].
Xiang, Fanbo ;
Xu, Zexiang ;
Hasan, Milos ;
Hold-Geoffroy, Yannick ;
Sunkavalli, Kalyan ;
Su, Hao .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :7115-7124
[47]  
Xu DK, 2022, ADV NEUR IN
[48]  
Xu Ruikang, 2023, Computer Vision - ECCV 2022 Workshops: Proceedings. Lecture Notes in Computer Science (13805), P78, DOI 10.1007/978-3-031-25072-9_6
[49]  
Xu W., 2023, INT C LEARN REPR WOR
[50]   Implicit Neural Representation for Physics-driven Actuated Soft Bodies [J].
Yang, Lingchen ;
Kim, Byungsoo ;
Zoss, Gaspard ;
Gozcu, Baran ;
Gross, Markus ;
Solenthaler, Barbara .
ACM TRANSACTIONS ON GRAPHICS, 2022, 41 (04)