QUANTIZATION OF SEMISIMPLE REAL LIE GROUPS

被引:0
作者
DE Commer, Kenny [1 ]
机构
[1] Vrije Univ Brussel, Dept Math & Data Sci, Pl Laan 2, B-1050 Brussels, Belgium
来源
ARCHIVUM MATHEMATICUM | 2024年 / 60卷 / 05期
关键词
quantum groups; real forms; quantized enveloping algebras; Harish-Chandra modules; ZONAL SPHERICAL-FUNCTIONS; QUANTUM; ALGEBRAS; POLYNOMIALS; DUALITY; MODULES; SPACES; ANALOG;
D O I
10.5817/AM2024-5-285
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide a novel construction of quantized universal enveloping *-algebras of real semisimple Lie algebras, based on Letzter's theory of quantum symmetric pairs. We show that these structures can be 'integrated', leading to a quantization of the group C*-algebra of an arbitrary semisimple algebraic real Lie group.
引用
收藏
页码:285 / 310
页数:26
相关论文
共 44 条
[1]  
Abella A., 2009, Sao Paulo J. Math. Sci., V3, P193
[2]  
[Anonymous], 2001, Monographs and Textbooks in Pure and Applied Mathematics
[3]   Comparison of Unitary Duals of Drinfeld Doubles and Complex Semisimple Lie Groups [J].
Arano, Yuki .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 351 (03) :1137-1147
[4]   Unitary spherical representations of Drinfeld doubles [J].
Arano, Yuki .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2018, 742 :157-186
[5]   The quantum analog of a symmetric pair: A construction in type (C-n, A(1)xC(n-1)) [J].
Baldoni, W ;
Frajria, PM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (08) :3235-3276
[6]   Canonical bases arising from quantum symmetric pairs [J].
Bao, Huanchen ;
Wang, Weiqiang .
INVENTIONES MATHEMATICAE, 2018, 213 (03) :1099-1177
[7]   Crossed modules and Doi-Hopf modules [J].
Caenepeel, S ;
Militaru, G ;
Zhu, SL .
ISRAEL JOURNAL OF MATHEMATICS, 1997, 100 (1) :221-247
[8]  
Chari V., 1994, A Guide to Quantum Groups
[9]   Relative Fourier transforms and expectations on coideal subalgebras [J].
Chirvasitu, Alexandru .
JOURNAL OF ALGEBRA, 2018, 516 :271-297
[10]   A quantum duality principle for coisotropic subgroups and Poisson quotients [J].
Ciccoli, N ;
Gavarini, F .
ADVANCES IN MATHEMATICS, 2006, 199 (01) :104-135