Mean Field Limit of Point Vortices with Environmental Noises to Deterministic 2D Navier-Stokes Equations

被引:2
作者
Flandoli, Franco [1 ]
Luo, Dejun [2 ,3 ]
机构
[1] Scuola Normale Super Pisa, Piazza Cavalieri 7, I-56126 Pisa, Italy
[2] Chinese Acad Sci, Acad Math & Syst Sci, Key Lab RCSDS, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Mean field limit; Point vortex; Environmental noise; 2D Navier-Stokes equation; Entropy; EULER EQUATIONS; CHAOS; PROPAGATION; SYSTEMS;
D O I
10.1007/s40304-024-00406-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider point vortex systems on the two-dimensional torus perturbed by environmental noise. It is shown that, under a suitable scaling of the noises, weak limit points of the empirical measures are solutions to the vorticity formulation of deterministic 2D Navier-Stokes equations.
引用
收藏
页数:22
相关论文
共 30 条
[1]   Gradient estimates and Harnack inequalities on non-compact Riemannian manifolds [J].
Arnaudon, Marc ;
Thalmaier, Anton ;
Wang, Feng-Yu .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (10) :3653-3670
[2]  
Billingsley P., 1968, Convergence of Probability Measures, DOI DOI 10.1002/9780470316962
[3]   Sharp nonuniqueness for the Navier-Stokes equations [J].
Cheskidov, Alexey ;
Luo, Xiaoyutao .
INVENTIONES MATHEMATICAE, 2022, 229 (03) :987-1054
[4]   Regularized vortex approximation for 2D Euler equations with transport noise [J].
Coghi, Michele ;
Maurelli, Mario .
STOCHASTICS AND DYNAMICS, 2020, 20 (06)
[5]   PROPAGATION OF CHAOS FOR INTERACTING PARTICLES SUBJECT TO ENVIRONMENTAL NOISE [J].
Coghi, Michele ;
Flandoli, Franco .
ANNALS OF APPLIED PROBABILITY, 2016, 26 (03) :1407-1442
[6]   Full well-posedness of point vortex dynamics corresponding to stochastic 2D Euler equations [J].
Flandoli, F. ;
Gubinelli, M. ;
Priola, E. .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2011, 121 (07) :1445-1463
[7]   Scaling limit of stochastic 2D Euler equations with transport noises to the deterministic Navier-Stokes equations [J].
Flandoli, Franco ;
Galeati, Lucio ;
Luo, Dejun .
JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (01) :567-600
[8]   CONVERGENCE OF TRANSPORT NOISE TO ORNSTEIN-UHLENBECK FOR 2D EULER EQUATIONS UNDER THE ENSTROPHY MEASURE [J].
Flandoli, Franco ;
Luo, Dejun .
ANNALS OF PROBABILITY, 2020, 48 (01) :264-295
[9]  
Flandoli F, 2019, PROBAB THEORY REL, V175, P783, DOI 10.1007/s00440-019-00902-8
[10]   Propagation of chaos for the 2D viscous vortex model [J].
Fournier, Nicolas ;
Hauray, Maxime ;
Mischler, Stephane .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2014, 16 (07) :1423-1466