Scattering and Blow-Up Dichotomy of the Energy-Critical Nonlinear Schrödinger Equation With the Inverse-Square Potential

被引:0
作者
Hamano, Masaru [1 ]
Ikeda, Masahiro [2 ,3 ]
机构
[1] Waseda Univ, Fac Sci & Engn, Tokyo, Japan
[2] RIKEN Ctr Adv Intelligence Project, Tokyo, Japan
[3] Keio Univ, Fac Sci & Technol, Dept Math, Yokohama, Japan
关键词
inverse-square potential; nonlinear Schr & ouml; dinger equation; scattering; blow-up; GLOBAL WELL-POSEDNESS; SCHRODINGER-EQUATION; THRESHOLD SOLUTIONS; GROUND-STATE; CRITICAL NLS; PROOF; H-1;
D O I
10.1002/mma.10794
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the energy critical nonlinear Schr & ouml;dinger equation with a repulsive inverse square potential. In particular, we deal with radial initial data, whose energy is equal to the energy of static solution to the corresponding nonlinear Schr & ouml;dinger equation without a potential. We investigate time behavior of the radial solutions with such initial data.
引用
收藏
页码:9225 / 9240
页数:16
相关论文
共 47 条
[1]   Blowup and scattering problems for the nonlinear Schrodinger equations [J].
Akahori, Takafumi ;
Nawa, Hayato .
KYOTO JOURNAL OF MATHEMATICS, 2013, 53 (03) :629-672
[2]  
Ardila AH, 2024, EVOL EQU CONTROL THE, V13, P1401, DOI 10.3934/eect.2024033
[3]   Threshold scattering for the focusing NLS with a repulsive Dirac delta potential [J].
Ardila, Alex H. ;
Inui, Takahisa .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 313 :54-84
[4]   SCATTERING BELOW THE GROUND STATE FOR THE 2d RADIAL NONLINEAR SCHRODINGER EQUATION [J].
Arora, Anudeep Kumar ;
Dodson, Benjamin ;
Murphy, Jason .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (04) :1653-1663
[5]   Strichartz estimates for the wave and Schrodinger equations with the inverse-square potential [J].
Burq, N ;
Planchon, F ;
Stalker, JG ;
Tahvildar-Zadeh, AS .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 203 (02) :519-549
[6]  
Campos L., ARXIV
[7]   THRESHOLD SOLUTIONS FOR THE INTERCRITICAL INHOMOGENEOUS NLS [J].
Campos, Luccas ;
Murphy, Jason .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2023, 55 (04) :3807-3843
[8]   Threshold solutions for the nonlinear Schrodinger equation [J].
Campos, Luccas ;
Farah, Luiz Gustavo ;
Roudenko, Svetlana .
REVISTA MATEMATICA IBEROAMERICANA, 2022, 38 (05) :1637-1708
[9]  
Cazenave T., 2003, Courant Lecture Notes in Mathematics, P10
[10]   GLOBAL WELL-POSEDNESS AND SCATTERING FOR THE FOCUSING, CUBIC SCHRODINGER EQUATION IN DIMENSION d=4 [J].
Dodson, Benjamin .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2019, 52 (01) :139-180