Coastal chlorophyll-a concentration estimation by fusion of Sentinel-2 multispectral instrument and in-situ hyperspectral data

被引:0
|
作者
Jia, Mengxue [1 ]
Xu, Mingming [1 ]
Cui, Jianyong [1 ]
Liu, Shanwei [1 ]
Sheng, Hui [1 ]
Li, Zhongwei [1 ]
机构
[1] China Univ Petr East China, Coll Oceanog & Space Informat, Qingdao, Peoples R China
基金
中国国家自然科学基金;
关键词
in-situ hyperspectral data; Sentinel-2 multispectral instrument; spectral fusion; chlorophyll-a; machine learning; SUPPORT VECTOR REGRESSION; ALGORITHM; INVERSION; MODEL; VEGETATION; SATELLITE;
D O I
10.1117/1.JRS.18.042602
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Chlorophyll-a (Chl-a) concentration estimation by remote sensing is an important means for monitoring offshore water quality and eutrophication. In-situ hyperspectral data can achieve accurate analyses of Chl-a, but it is not suitable for regional inversion. Satellite remote sensing provides the possibility for regional inversion, but the precision is lower limited to atmospheric correction result. Therefore, this work uses machine learning to fuse in-situ hyperspectral data and Sentinel-2 multispectral instrument images to combine their complementary advantages, so as to improve the precision of regional Chl-a concentration inversion. First, the in-situ spectra were resampled based on the satellite spectral response function to obtain equivalent reflectance. Second, the spectral feature bands of Chl-a were determined by correlation analysis. Then three machine learning models, support vector regression, random forest, and back propagation neural network, were used to establish mapping relationships of feature bands between equivalent reflectance and satellite image reflectance so as to correct the satellite feature bands. Finally, Chl-a inversion models were constructed based on the satellite feature bands before and after correction. The results demonstrate that the corrected inversion model shows an increase in R-2 by 0.25 and a decrease in mean relative error by 7.6%. This fusion method effectively improves the accuracy of large-scale Chl-a concentration estimation.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Estimation of chlorophyll-a concentration in Lake Tai, China using in situ hyperspectral data
    Jiao, H. B.
    Zha, Y.
    Gao, J.
    Li, Y. M.
    Wei, Y. C.
    Huang, J. Z.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2006, 27 (19) : 4267 - 4276
  • [2] Calibration and validation of algorithms for the estimation of chlorophyll-a concentration and Secchi depth in inland waters with Sentinel-2
    Pereira-Sandoval, Marcela
    Patricia Urrego, Esther
    Ruiz-Verdu, Antonio
    Tenjo, Carolina
    Delegido, Jesus
    Soria-Perpinya, Xavier
    Vicente, Eduardo
    Soria, Juan
    Moreno, Jose
    LIMNETICA, 2019, 38 (01): : 471 - 487
  • [3] Retrieval of chlorophyll-a concentration based on Sentinel-2 images in inland lakes
    Shi, Xuming
    Gu, Lingjia
    Jiang, Tao
    Jiang, Mingda
    EARTH OBSERVING SYSTEMS XXVII, 2022, 12232
  • [4] CALIBRATION AND VALIDATION OF ALGORITHMS FOR THE ESTIMATION OF CHLOROPHYLL-A IN INLAND WATERS WITH SENTINEL-2
    Pereira-Sandoval, Marcela
    Ruiz-Verdu, Antonio
    Tenjo, Carolina
    Delegido, Jesus
    Urrego, Patricia
    Pena, Ramon
    Vicente, Eduardo
    Soria, Juan
    Soria, Javier
    Moreno, Jose
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 9276 - 9279
  • [5] ASSESSMENT OF CHLOROPHYLL-A RETRIEVALS ALGORITHMS FROM SENTINEL-2 SATELLITE DATA
    Moutzouris-Sidiris, Ioannis
    Topouzelis, Konstantinos
    SIXTH INTERNATIONAL CONFERENCE ON REMOTE SENSING AND GEOINFORMATION OF THE ENVIRONMENT (RSCY2018), 2018, 10773
  • [6] Establishing a ANN model with in-situ hyperspectral data for estimation chlorophyll-a concentrations in Nanhu Lake of Changchun, China
    Song, KS
    Zhang, B
    Duan, HT
    Wang, ZM
    IGARSS 2005: IEEE International Geoscience and Remote Sensing Symposium, Vols 1-8, Proceedings, 2005, : 5343 - 5346
  • [7] Estimation of Phytoplankton Chlorophyll-a Concentrations in the Western Basin of Lake Erie Using Sentinel-2 and Sentinel-3 Data
    Pirasteh, Saied
    Mollaee, Somayeh
    Fatholahi, Sarah Narges
    Li, Jonathan
    CANADIAN JOURNAL OF REMOTE SENSING, 2020, 46 (05) : 585 - 602
  • [8] Mar Menor lagoon (SE Spain) chlorophyll-a and turbidity estimation with Sentinel-2
    Zhan, Y.
    Delegido, J.
    Erena, M.
    Soria, J. M.
    Ruiz-Verdu, A.
    Urrego, P.
    Soria-Perpinya, X.
    Vicente, E.
    Moreno, J.
    LIMNETICA, 2022, 41 (02): : 305 - 323
  • [9] Band Ratios Combination for Estimating Chlorophyll-a from Sentinel-2 and Sentinel-3 in Coastal Waters
    Tran, Manh Duy
    Vantrepotte, Vincent
    Loisel, Hubert
    Oliveira, Eduardo N.
    Tran, Kien Trung
    Jorge, Daniel
    Meriaux, Xavier
    Paranhos, Rodolfo
    REMOTE SENSING, 2023, 15 (06)
  • [10] Physical-Based Spatial-Spectral Deep Fusion Network for Chlorophyll-a Estimation Using MODIS and Sentinel-2 MSI Data
    He, Yuting
    Wu, Penghai
    Ma, Xiaoshuang
    Wang, Jie
    Wu, Yanlan
    REMOTE SENSING, 2022, 14 (22)