Robustness of quantum correlation in quantum energy teleportation

被引:4
作者
Ikeda, Kazuki [1 ,2 ,3 ]
Lowe, Adam [4 ]
机构
[1] Univ Massachusetts Boston, Dept Phys, Boston, MA 02125 USA
[2] SUNY Stony Brook, Codesign Ctr Quantum Advantage C2QA, Stony Brook, CO 11794 USA
[3] SUNY Stony Brook, Dept Phys & Astron, Ctr Nucl Theory, Stony Brook, NY 11794 USA
[4] Aston Univ, Coll Engn & Phys Sci, Dept Appl Math & Data Sci, Birmingham B4 7ET, England
关键词
LATTICE GAUGE-THEORIES; REAL-TIME DYNAMICS; MODEL; INFORMATION; ALGORITHMS; INVARIANCE; SIMULATION; ANALOGY; QUBITS;
D O I
10.1103/PhysRevD.110.096010
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this article, we explore a feedback-control protocol in different quantum field theories (QFTs) to study the quantum correlation in nonunitary evolution of quantum systems. Traditional studies on QFTs focus on quantum entanglement of pure states under the unitary evolution, however, we examine quantum correlation in mixed states using quantum energy teleportation (QET), which is an energy transfer protocol by utilizing ground state entanglement, and introduce quantum discord as a measure. QET involves a midcircuit measurement, which disrupts pure state entanglement. Despite this, our analysis demonstrates that quantum discord maintains the correlation throughout the QET process. We conducted numerical analyses with benchmark models including the Nambu-Jona-Lasinio (NJL) model, revealing that quantum discord consistently acts as an order parameter for phase transitions. The model is extended in a way that it has both the chiral chemical potential and the chemical potential, which are useful to study the phase structures mimicking the chiral imbalance between left- and right- quarks coupled to the chirality density operator. In all cases we studied, the quantum discord behaved as an order parameter of the phase transition.
引用
收藏
页数:11
相关论文
共 123 条
[1]   Gluon field digitization for quantum computers [J].
Alexandru, Andrei ;
Bedaque, Paulo F. ;
Harmalkar, Siddhartha ;
Lamm, Henry ;
Lawrence, Scott ;
Warrington, Neill C. .
PHYSICAL REVIEW D, 2019, 100 (11)
[2]   σ Models on Quantum Computers [J].
Alexandru, Andrei ;
Bedaque, Paulo F. ;
Lamm, Henry ;
Lawrence, Scott .
PHYSICAL REVIEW LETTERS, 2019, 123 (09)
[3]   Atomic Quantum Simulation of U(N) and SU(N) Non-Abelian Lattice Gauge Theories [J].
Banerjee, D. ;
Boegli, M. ;
Dalmonte, M. ;
Rico, E. ;
Stebler, P. ;
Wiese, U. -J. ;
Zoller, P. .
PHYSICAL REVIEW LETTERS, 2013, 110 (12)
[4]   Atomic Quantum Simulation of Dynamical Gauge Fields Coupled to Fermionic Matter: From String Breaking to Evolution after a Quench [J].
Banerjee, D. ;
Dalmonte, M. ;
Mueller, M. ;
Rico, E. ;
Stebler, P. ;
Wiese, U. -J. ;
Zoller, P. .
PHYSICAL REVIEW LETTERS, 2012, 109 (17)
[5]   Thermal evolution of the Schwinger model with matrix product operators [J].
Banuls, M. C. ;
Cichy, K. ;
Cirac, J. I. ;
Jansen, K. ;
Saito, H. .
PHYSICAL REVIEW D, 2015, 92 (03)
[6]   The mass spectrum of the Schwinger model with matrix product states [J].
Banuls, M. C. ;
Cichy, K. ;
Cirac, J. I. ;
Jansen, K. .
JOURNAL OF HIGH ENERGY PHYSICS, 2013, (11)
[7]  
Banuls M. C., 2020, Eur. Phys. J. D, V74, P165
[8]   Gauge-invariant implementation of the Abelian-Higgs model on optical lattices [J].
Bazavov, A. ;
Meurice, Y. ;
Tsai, S. -W. ;
Unmuth-Yockey, J. ;
Zhang, Jin .
PHYSICAL REVIEW D, 2015, 92 (07)
[9]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[10]   Assessing the Progress of Trapped-Ion Processors Towards Fault-Tolerant Quantum Computation [J].
Bermudez, A. ;
Xu, X. ;
Nigmatullin, R. ;
O'Gorman, J. ;
Negnevitsky, V. ;
Schindler, P. ;
Monz, T. ;
Poschinger, U. G. ;
Hempel, C. ;
Home, J. ;
Schmidt-Kaler, F. ;
Biercuk, M. ;
Blatt, R. ;
Benjamin, S. ;
Mueller, M. .
PHYSICAL REVIEW X, 2017, 7 (04)