共 48 条
- [1] Gazoulis D., Gkanis I., Makridakis C.G., On the stability and convergence of physics informed neural networks, (2023)
- [2] Bai G., Koley U., Mishra S., Molinaro R., Physics informed neural networks (PINNs) for approximating nonlinear dispersive PDEs, J. Comput. Math., 39, 6, pp. 816-847, (2021)
- [3] E. W., Yu B., The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems, Commun. Math. Stat., 6, 1, pp. 1-12, (2018)
- [4] Brenner S.C., Scott L.R., The mathematical theory of finite element methods, Texts in Applied Mathematics, 15, (2008)
- [5] Nitsche J., Über ein variationsprinzip zur lösung von Dirichlet-problemen bei verwendung von teilräumen, die keinen randbedingungen unterworfen sind, Abhandlungen aus dem mathematischen Seminar der Universität Hamburg, Vol. 36, No. 1, pp. 9-15, (1971)
- [6] Ming Y.L., Et al., Deep Nitsche method: Deep Ritz method with essential boundary conditions, Commun. Comput. Phys., 29, 5, pp. 1365-1384, (2021)
- [7] Georgoulis E.H., Loulakis M., Tsiourvas A., Discrete gradient flow approximations of high dimensional evolution partial differential equations via deep neural networks, Commun. Nonlinear Sci. Numer. Simul., 117, (2023)
- [8] Ern A., Guermond J.L., Finite Elements II, (2021)
- [9] Ciarlet P.G., Basic error estimates for elliptic problems, Handbook of Numerical Analysis, Vol. II, Handb. Numer. Anal., II, pp. 17-351, (1991)
- [10] Raissi M., Perdikaris P., Karniadakis G.E., Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys., 378, pp. 686-707, (2019)