Susceptible-infected-recovered model with stochastic transmission

被引:1
作者
Gourieroux, Christian [1 ,2 ,3 ]
Lu, Yang [4 ]
机构
[1] Univ Toronto, Toronto, ON, Canada
[2] Toulouse Sch Econ, Paris, France
[3] CREST, Paris, France
[4] Concordia Univ, Dept Math & Stat, Montreal, PQ, Canada
来源
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE | 2025年 / 53卷 / 02期
关键词
Herd immunity; intrinsic time; mover-stayer phenomenon; population at risk; reproductive number; semiparametric model; SIR model; stochastic transmission; EPIDEMIC MODEL; NONLINEAR INCIDENCE; REPRODUCTION NUMBERS; LYAPUNOV FUNCTIONS; SIRS MODEL; STABILITY; DYNAMICS; PERMANENCE; EXTINCTION; LAW;
D O I
10.1002/cjs.11835
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The susceptible-infected-recovered (SIR) model is the cornerstone of epidemiological models. However, this specification depends on two parameters only, which results in its lack of flexibility and explains its difficulty to replicate the volatile reproduction numbers observed in practice. We extend the standard SIR model to a semiparametric SIR model, by first introducing a functional parameter of transmission, and then making this function stochastic. This leads to a SIR model with stochastic transmission. Our model is particularly tractable. We derive its closed-form solution and use it to compute key indicators, such as the condition (and the threshold) of herd immunity and the timing of the peak. When the population size is finite and the observations are in discrete time, there is also observational uncertainty. We propose a nonlinear state-space framework under which we analyze the relative magnitudes of the observational and intrinsic uncertainties during the evolution of the epidemic. We emphasize the lack of robustness of the notion of herd immunity when the SIR model is time-discretized. Le mod & egrave;le Susceptibles-Infectieux-R & eacute;tablis (SIR) est le mod & egrave;le fondamental en & eacute;pid & eacute;miologie. Cependant, ce mod & egrave;le ne poss & egrave;de que deux param & egrave;tres, ce qui limite sa flexibilit & eacute; et explique sa difficult & eacute; & agrave; reproduire les nombres de reproduction observ & eacute;s, qui sont tr & egrave;s volatiles en pratique. Nous & eacute;tendons d'abord le mod & egrave;le SIR standard en un mod & egrave;le semi-param & eacute;trique, en introduisant un param & egrave;tre fonctionnel de transmission, qui sera ensuite rendu stochastique. Cela conduit & agrave; un mod & egrave;le SIR avec transmission stochastique. Notre mod & egrave;le est particuli & egrave;rement facile & agrave; manier. Nous obtenons sa solution explicite et l'utilisons pour calculer des indicateurs cl & eacute;s, tels que la condition (et le seuil) de l'immunit & eacute; collective, le moment du pic, etc. Lorsque la population est finie et que les observations sont en temps discret, il existe & eacute;galement une incertitude d'observation. Nous proposons un cadre d'espace-& eacute;tat non lin & eacute;aire, sous lequel nous analysons les magnitudes relatives des incertitudes d'observation et intrins & egrave;ques pendant l'& eacute;volution de l'& eacute;pid & eacute;mie. Nous soulignons le manque de robustesse de la notion d'immunit & eacute; collective, lorsque le mod & egrave;le SIR est discr & eacute;tis & eacute; dans le temps.
引用
收藏
页数:30
相关论文
共 63 条
[1]   SOME DISCRETE-TIME SI, SIR, AND SIS EPIDEMIC MODELS [J].
ALLEN, LJS .
MATHEMATICAL BIOSCIENCES, 1994, 124 (01) :83-105
[2]  
ANDERSON R M, 1991
[3]   REGULATION AND STABILITY OF HOST-PARASITE POPULATION INTERACTIONS .1. REGULATORY PROCESSES [J].
ANDERSON, RM ;
MAY, RM .
JOURNAL OF ANIMAL ECOLOGY, 1978, 47 (01) :219-247
[4]  
BAILEY NTJ, 1980, ADV APPL PROBAB, V12, P560, DOI 10.1017/S0001867800035138
[5]  
Bernoulli D., 1766, Memoires de Mathematique et de Physique, Presentes a l'Academie Royale des Sciences, par Divers Scavans Lus Dans Ses Assemblees, P1
[6]  
Blumen I., 1955, CORNELL STUDIES IND, VVI
[7]  
Boatto S., 2018, SIR MODEL TIME DEPEN
[8]  
Bohner M., 2003, ADV DYNAMIC EQUATION, DOI DOI 10.1007/978-0-8176-8230-9
[9]   Exact solution to a dynamic SIR model [J].
Bohner, Martin ;
Streipert, Sabrina ;
Torres, Delfim F. M. .
NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2019, 32 :228-238
[10]   Age-specific transmission dynamics of SARS-CoV-2 during the first 2 years of the pandemic [J].
Boldea, Otilia ;
Alipoor, Amir ;
Pei, Sen ;
Shaman, Jeffrey ;
Rozhnova, Ganna .
PNAS NEXUS, 2024, 3 (02)