Position-Guided Prompt Learning for Anomaly Detection in Chest X-Rays

被引:1
作者
Sun, Zhichao [1 ]
Gu, Yuliang [1 ]
Liu, Yepeng [1 ]
Zhang, Zerui [1 ]
Zhao, Zhou [2 ]
Xu, Yongchao [1 ]
机构
[1] Wuhan Univ, Natl Engn Res Ctr Multimedia Software, Med Artificial Intelligence Res Inst,Renmin Hosp, Inst Artificial Intelligence,Sch Comp Sci, Wuhan, Peoples R China
[2] Cent China Normal Univ, Sch Comp Sci, Wuhan, Peoples R China
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT I | 2024年 / 15001卷
关键词
Anomaly detection; Chest X-ray; Prompt learning;
D O I
10.1007/978-3-031-72378-0_53
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Anomaly detection in chest X-rays is a critical task. Most methods mainly model the distribution of normal images, and then regard significant deviation from normal distribution as anomaly. Recently, CLIP-based methods, pre-trained on a large number of medical images, have shown impressive performance on zero/few-shot downstream tasks. In this paper, we aim to explore the potential of CLIP-based methods for anomaly detection in chest X-rays. Considering the discrepancy between the CLIP pre-training data and the task-specific data, we propose a position-guided prompt learning method. Specifically, inspired by the fact that experts diagnose chest X-rays by carefully examining distinct lung regions, we propose learnable position-guided text and image prompts to adapt the task data to the frozen pre-trained CLIP-based model. To enhance the model's discriminative capability, we propose a novel structure-preserving anomaly synthesis method within chest x-rays during the training process. Extensive experiments on three datasets demonstrate that our proposed method outperforms some state-of-the-art methods. The code of our implementation is available at https://github.com/sunzc-sunny/PPAD.
引用
收藏
页码:567 / 577
页数:11
相关论文
共 28 条
[1]   Many Tasks Make Light Work: Learning to Localise Medical Anomalies from Multiple Synthetic Tasks [J].
Baugh, Matthew ;
Tan, Jeremy ;
Mueller, Johanna P. ;
Dombrowski, Mischa ;
Batten, James ;
Kainz, Bernhard .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT I, 2023, 14220 :162-172
[2]   AMAE: Adaptation of Pre-trained Masked Autoencoder for Dual-Distribution Anomaly Detection in Chest X-Rays [J].
Bozorgtabar, Behzad ;
Mahapatra, Dwarikanath ;
Thiran, Jean-Philippe .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT I, 2023, 14220 :195-205
[3]   Dual-distribution discrepancy with self-supervised refinement for anomaly detection in medical images [J].
Cai, Yu ;
Chen, Hao ;
Yang, Xin ;
Zhou, Yu ;
Cheng, Kwang-Ting .
MEDICAL IMAGE ANALYSIS, 2023, 86
[4]   Knowledge Boosting: Rethinking Medical Contrastive Vision-Language Pre-training [J].
Chen, Xiaofei ;
He, Yuting ;
Xue, Cheng ;
Ge, Rongjun ;
Li, Shuo ;
Yang, Guanyu .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT I, 2023, 14220 :405-415
[5]  
Chen YH, 2022, AAAI CONF ARTIF INTE, P383
[6]   Memorizing Normality to Detect Anomaly: Memory-augmented Deep Autoencoder for Unsupervised Anomaly Detection [J].
Gong, Dong ;
Liu, Lingqiao ;
Le, Vuong ;
Saha, Budhaditya ;
Mansour, Moussa Reda ;
Venkatesh, Svetha ;
van den Hengel, Anton .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :1705-1714
[7]  
Irvin J, 2019, AAAI CONF ARTIF INTE, P590
[8]   MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text reports [J].
Johnson, Alistair E. W. ;
Pollard, Tom J. ;
Berkowitz, Seth J. ;
Greenbaum, Nathaniel R. ;
Lungren, Matthew P. ;
Deng, Chih-ying ;
Mark, Roger G. ;
Horng, Steven .
SCIENTIFIC DATA, 2019, 6 (1)
[9]   Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning [J].
Kermany, Daniel S. ;
Goldbaum, Michael ;
Cai, Wenjia ;
Valentim, Carolina C. S. ;
Liang, Huiying ;
Baxter, Sally L. ;
McKeown, Alex ;
Yang, Ge ;
Wu, Xiaokang ;
Yan, Fangbing ;
Dong, Justin ;
Prasadha, Made K. ;
Pei, Jacqueline ;
Ting, Magdalena ;
Zhu, Jie ;
Li, Christina ;
Hewett, Sierra ;
Dong, Jason ;
Ziyar, Ian ;
Shi, Alexander ;
Zhang, Runze ;
Zheng, Lianghong ;
Hou, Rui ;
Shi, William ;
Fu, Xin ;
Duan, Yaou ;
Huu, Viet A. N. ;
Wen, Cindy ;
Zhang, Edward D. ;
Zhang, Charlotte L. ;
Li, Oulan ;
Wang, Xiaobo ;
Singer, Michael A. ;
Sun, Xiaodong ;
Xu, Jie ;
Tafreshi, Ali ;
Lewis, M. Anthony ;
Xia, Huimin ;
Zhang, Kang .
CELL, 2018, 172 (05) :1122-+
[10]   MaPLe: Multi-modal Prompt Learning [J].
Khattak, Muhammad Uzair ;
Rasheed, Hanoona ;
Maaz, Muhammad ;
Khan, Salman ;
Khan, Fahad Shahbaz .
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, :19113-19122