Hier-FedMeta: A Hierarchical Federated Meta-Learning Framework for Personalized and Efficient IoV Systems

被引:1
作者
Chen, Yiming [1 ]
Wu, Celimuge [1 ]
Du, Zhaoyang [1 ]
Lin, Yangfei [1 ]
Djahel, Soufiene [2 ]
Zhong, Lei [3 ]
机构
[1] Univ Electrocommun, Tokyo, Japan
[2] Coventry Univ, Ctr Future Transport & Cities, Coventry, W Midlands, England
[3] Toyota Motor Co Ltd, Tokyo, Japan
来源
2024 IEEE 99TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2024-SPRING | 2024年
关键词
hierarchical federated learning; meta-learning; personalised; Internet of Vehicles;
D O I
10.1109/VTC2024-SPRING62846.2024.10683124
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Internet of Vehicles (IoV) enhances smart city functionalities by interconnecting diverse components, yet it introduces significant challenges in terms of user privacy, communication efficiency, and energy consumption. Traditional federated learning frameworks, while adept at addressing these concerns, fall short in personalization due to heterogeneous data distributions among clients. To overcome this, we introduce Hier-FedMeta, a novel framework that combines hierarchical federated learning with meta-learning to provide tailored and efficient solutions. Our comparative analyses with four established methods show Hier-FedMeta's superior generalization capabilities and adaptability, achieving enhanced performance with minimal computational overhead after just one update step. Furthermore, our in-depth analysis of aggregation parameters offers valuable insights for the optimization of hierarchical federated meta-learning architectures, representing a significant step forward in personalized learning for IoV in smart cities.
引用
收藏
页数:5
相关论文
共 16 条
[1]   Survey on the Internet of Vehicles: Network Architectures and Applications [J].
Ji B. ;
Zhang X. ;
Mumtaz S. ;
Han C. ;
Li C. ;
Wen H. ;
Wang D. .
IEEE Communications Standards Magazine, 2020, 4 (01) :34-41
[2]  
Chen F, 2019, Arxiv, DOI arXiv:1802.07876
[3]   Accessibility Analysis and Modeling for IoV in an Urban Scene [J].
Cheng, Jiujun ;
Yuan, Guiyuan ;
Zhou, Mengchu ;
Gao, Shangce ;
Liu, Cong ;
Duan, Hua ;
Zeng, QingTian .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (04) :4246-4256
[4]   Energy-Efficient and Federated Meta-Learning via Projected Stochastic Gradient Ascent [J].
Elgabli, Anis ;
Ben Issaid, Chaouki ;
Bedi, Amrit S. ;
Bennis, Mehdi ;
Aggarwal, Vaneet .
2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
[5]  
Fallah A, 2020, Arxiv, DOI arXiv:2002.07948
[6]  
Finn C, 2017, PR MACH LEARN RES, V70
[7]   A Tutorial on 5G NR V2X Communications [J].
Garcia, Mario H. Castaneda ;
Molina-Galan, Alejandro ;
Boban, Mate ;
Gozalvez, Javier ;
Coll-Perales, Baldomero ;
Sahin, Taylan ;
Kousaridas, Apostolos .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2021, 23 (03) :1972-2026
[8]  
Jiang YH, 2023, Arxiv, DOI arXiv:1909.12488
[9]   Client-Edge-Cloud Hierarchical Federated Learning [J].
Liu, Lumin ;
Chang, Jun ;
Song, S. H. ;
Letaief, Khaled B. .
ICC 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2020,
[10]  
Liu X., 2023, IEEE Communications Surveys & Tutorials