Heat Conduction Modulation in Incommensurate Twisted Stacking of Transition-Metal Dichalcogenide

被引:0
|
作者
Xu, Bin [1 ,2 ]
An, Meng [1 ]
Masubuchi, Satoru [3 ]
Li, Yuanzhe [2 ]
Guo, Rulei [2 ]
Machida, Tomoki [3 ]
Shiomi, Junichiro [1 ,2 ]
机构
[1] Univ Tokyo, Dept Mech Engn, 7-3-1 Hongo, Tokyo 1138656, Japan
[2] Univ Tokyo, Inst Engn Innovat, 2-11 Yayoi, Tokyo 1138656, Japan
[3] Univ Tokyo, Inst Ind Sci, 4-6-1 Komaba,Meguro Ku, Tokyo 1538505, Japan
基金
日本学术振兴会;
关键词
incommensurate twist bilayers; interlayer heat conductions; phonons; transition-metal dichalcogenides; twist angles;
D O I
10.1002/adfm.202422761
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Understanding and controlling heat conduction in twisted transition-metal dichalcogenides (TMDs) is crucial for thermal management in TMDs semiconductor devices and advancements in their thermal functions. Despite the significant tunability reported for interlayer heat conduction in randomly twisted multilayer TMDs, the dependence of heat conduction on the twist angle remains unclear. In this study, the twist-angle-dependent interlayer heat conductance in bilayer WS2 and MoS2 is initially assessed. As a result, the thermal conductance decreases as the twist angle between the two stacked layers increases from the commensurate to incommensurate angles, with particularly strong variation near the commensurate angle. This angle dependence correlates with the frequency shift in the Raman spectrum, indicating interlayer interactions and lattice strain within the metastable, incommensurate twisted bilayer structure. Molecular dynamics analysis attributes the twist-angle-dependent heat conduction to the varying interlayer interactions and the overlap in the vibrational density of states determined by the incommensurate structure.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Is Semiconducting Transition-Metal Dichalcogenide Suitable for Spin Pumping?
    Lu, Bin
    Niu, Yue
    Chen, Qian
    Wong, Ping Kwan Johnny
    Guo, Qingjie
    Jiang, Wei
    Rath, Ashutosh
    Pennycook, Stephen J.
    Wang, Lei
    Xia, Ke
    Zhai, Ya
    Shen Wee, Andrew Thye
    Zhang, Wen
    NANO LETTERS, 2024, 25 (01) : 35 - 40
  • [32] Deep moire potentials in twisted transition metal dichalcogenide bilayers
    Shabani, Sara
    Halbertal, Dorri
    Wu, Wenjing
    Chen, Mingxing
    Liu, Song
    Hone, James
    Yao, Wang
    Basov, D. N.
    Zhu, Xiaoyang
    Pasupathy, Abhay N.
    NATURE PHYSICS, 2021, 17 (06) : 720 - +
  • [33] Exciton fine structure in twisted transition metal dichalcogenide heterostructures
    Kundu, Sudipta
    Amit, Tomer
    Krishnamurthy, H. R.
    Jain, Manish
    Refaely-Abramson, Sivan
    NPJ COMPUTATIONAL MATERIALS, 2023, 9 (01)
  • [34] Reconstruction of moire lattices in twisted transition metal dichalcogenide bilayers
    Maity, Indrajit
    Maiti, Prabal K.
    Krishnamurthy, H. R.
    Jain, Manish
    PHYSICAL REVIEW B, 2021, 103 (12)
  • [35] Topological multiferroic order in twisted transition metal dichalcogenide bilayers
    Haavisto, Mikael
    Lado, Jose L.
    Fumega, Adolfo O.
    SCIPOST PHYSICS, 2022, 13 (03):
  • [36] BAND STRUCTURES OF TRANSITION-METAL DICHALCOGENIDE LAYER COMPOUNDS
    MATTHEIS.LF
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1973, 18 (03): : 386 - 386
  • [37] STUDIES ON MIXED TRANSITION-METAL DICHALCOGENIDE ELECTROLYTE INTERFACES
    YOUSEFI, GH
    CRYSTAL RESEARCH AND TECHNOLOGY, 1990, 25 (06) : K125 - K129
  • [38] A monolayer transition-metal dichalcogenide as a topological excitonic insulator
    Daniele Varsano
    Maurizia Palummo
    Elisa Molinari
    Massimo Rontani
    Nature Nanotechnology, 2020, 15 : 367 - 372
  • [39] Theoretical study of the photocurrent in transition-metal dichalcogenide materials
    Lee, Hyun C.
    PHYSICAL REVIEW B, 2017, 95 (24)
  • [40] Electromechanical Properties of Small Transition-Metal Dichalcogenide Nanotubes
    Zibouche, Nourdine
    Ghorbani-Asl, Mahdi
    Heine, Thomas
    Kuc, Agnieszka
    INORGANICS, 2014, 2 (02): : 155 - 167