Nanoparticle Clustering in Supraparticles to Control Magnetic Long-Range Interactions

被引:0
|
作者
Wolf, Andreas [1 ,2 ]
Zhou, Huanhuan [1 ]
Groppe, Philipp [1 ]
Stiegler, Lisa M. S. [3 ,4 ]
Kaemaeraeinen, Tero [1 ]
Peukert, Wolfgang [3 ,4 ]
Walter, Johannes [3 ,4 ]
Wintzheimer, Susanne [1 ,2 ]
Mandel, Karl [1 ,2 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg FAU, Dept Chem & Pharm, Professorship Inorgan Chem, Egerlandstr 1, D-91058 Erlangen, Germany
[2] Fraunhofer Inst Silicate Res ISC, Neunerpl 2, D-97082 Wurzburg, Germany
[3] Friedrich Alexander Univ Erlangen Nurnberg FAU, Inst Particle Technol LFG, Cauerstr 4, D-91058 Erlangen, Germany
[4] Friedrich Alexander Univ Erlangen Nurnberg FAU, Erlangen Ctr Funct Particle Syst FPS, Haberstr 9a, D-91058 Erlangen, Germany
关键词
magnetic interactions; magnetic particle spectroscopy; selective agglomeration; spray-drying; superparamagnetic iron oxide nanoparticles; supraparticles; IRON-OXIDE NANOPARTICLES; HYPERTHERMIA; COMPLEXATION; SPECTROSCOPY; PARTICLES; IMPACT; SIZE;
D O I
10.1002/ppsc.202400180
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To tailor superparamagnetic iron oxide nanoparticles (SPIONs) to the specific needs of diverse application fields, it is essential to understand not only their intrinsic properties but also their interactions with each other. Theoretical models predicting/explaining the magnetization behavior of macroscopic samples containing millions of SPIONs are intricate due to the complexity of the underlying relaxation mechanisms in alternating fields. This study introduces supraparticles (SPs) as model architectures to empirically investigate magnetic interactions within and between large SPION clusters (>100 nanoparticles (NPs)). For this purpose, NP dispersions containing SPIONs and silica (SiO2)NPs as non-magnetic building blocks are spray-dried to form binary SPs. Selective salt-induced agglomeration of the two building block types before spray-drying is utilized to tailor SP architectures, including control over SPION cluster size, shape, and proximity. Magnetic particle spectroscopy (MPS), operating under ambient conditions, reveals altered magnetization behavior for different cluster structures. Not only the nearest SPION neighbors, but the whole cluster structure up to several micrometers is decisive for the magnetization behavior. This highlights the importance of long-range magnetic interactions. This work presents a versatile approach for designing model architectures to advance empirical interaction studies between SPIONs in macroscopic samples.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Clustering in a model with repulsive long-range interactions
    Barré, J
    Dauxois, T
    Ruffo, S
    PHYSICA A, 2001, 295 (1-2): : 254 - 260
  • [2] Dual nature of magnetic nanoparticle dispersions enables control over short-range attraction and long-range repulsion interactions
    Al Harraq, Ahmed
    Hymel, Aubry A.
    Lin, Emily
    Truskett, Thomas M.
    Bharti, Bhuvnesh
    COMMUNICATIONS CHEMISTRY, 2022, 5 (01)
  • [3] Dual nature of magnetic nanoparticle dispersions enables control over short-range attraction and long-range repulsion interactions
    Ahmed Al Harraq
    Aubry A. Hymel
    Emily Lin
    Thomas M. Truskett
    Bhuvnesh Bharti
    Communications Chemistry, 5
  • [4] On the structure of nanoparticle clusters: effects of long-range interactions
    Kamphorst, Rens
    Theisen, Maximilian F.
    Bordoloi, Ankur D.
    Salameh, Samir
    Meesters, Gabrie M. H.
    van Ommen, J. Ruud
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2025, 27 (11)
  • [5] LONG-RANGE MAGNETIC INTERACTIONS IN EUROPIUM HEXABORIDES
    SHANNON, JR
    SIENKO, MJ
    INORGANIC CHEMISTRY, 1972, 11 (04) : 904 - +
  • [6] Effect of long-range interactions on nanoparticle-induced aggregation
    Jezewski, Wojciech
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (33) : 22929 - 22936
  • [7] Spatial Clustering of Depinning Avalanches in Presence of Long-Range Interactions
    Le Priol, Clement
    Le Doussal, Pierre
    Rosso, Alberto
    PHYSICAL REVIEW LETTERS, 2021, 126 (02)
  • [8] LONG-RANGE INTERACTIONS
    MICKENS, RE
    FOUNDATIONS OF PHYSICS, 1979, 9 (3-4) : 261 - 269
  • [9] Nonlinear excitations in magnetic lattices with long-range interactions
    Moleron, Miguel
    Chong, C.
    Martinez, Alejandro J.
    Porter, Mason A.
    Kevrekidis, P. G.
    Daraio, Chiara
    NEW JOURNAL OF PHYSICS, 2019, 21 (06):
  • [10] Effects of long-range magnetic interactions on DLA aggregation
    Xu, XJ
    Cai, PG
    Ye, QL
    Xia, AG
    Ye, GX
    PHYSICS LETTERS A, 2005, 338 (01) : 1 - 7