EXISTENCE OF THE LEAST ENERGY SIGN-CHANGING SOLUTIONS FOR FRACTIONAL BREZIS-NIRENBERG PROBLEM

被引:0
作者
Li, Qi [1 ,2 ]
Peng, Shuangjie [3 ]
Wen, Shixin [4 ]
机构
[1] Wuhan Univ Sci & Technol, Coll Sci, Wuhan 430065, Peoples R China
[2] Wuhan Univ Sci & Technol, Hubei Prov Key Lab Syst Sci Met Proc, Wuhan 430065, Peoples R China
[3] Cent China Normal Univ, Sch Math & Stat, Key Lab Nonlinear Anal & Applicat, Hubei Key Lab Math Sci,Minist Educ, Wuhan 430079, Peoples R China
[4] Cent China Normal Univ, Sch Math & Stat, Key Lab Nonlinear Anal & Applicat, Minist Educ, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
NONLINEAR ELLIPTIC PROBLEMS; NODAL SOLUTIONS; EQUATIONS;
D O I
10.57262/ade030-0102-69
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the following fractional Brezis-Nirenberg problem {(-Delta)(s)u=|u|(2*s-2u)+lambda u, in Omega, u=0, in R-N\Omega, where 2(s)*=2N/N-2s, s is an element of(0,1), ohm is a bounded smooth open connected set in R-N, 0< lambda < lambda(1) and lambda(1) is the first eigenvalue of fractional Laplacian(-triangle)sunder the condition u= 0 in R-N\ohm. We establish the existence of the least energy sign-changing solutions for N >= 5s to the above problem, which includes the lower dimensional case. Our results extend and improve the recent works on the existence of sign-changing solutions established by Cora et al. in [9] and Guo et al. in [13] respectively
引用
收藏
页码:69 / 92
页数:24
相关论文
共 26 条
[1]   NODAL SOLUTIONS OF ELLIPTIC-EQUATIONS WITH CRITICAL SOBOLEV EXPONENTS [J].
ATKINSON, FV ;
BREZIS, H ;
PELETIER, LA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 85 (01) :151-170
[2]   On some critical problems for the fractional Laplacian operator [J].
Barrios, B. ;
Colorado, E. ;
de Pablo, A. ;
Sanchez, U. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (11) :6133-6162
[3]  
Bisci GM, 2016, ENCYCLOP MATH APPL, V162
[4]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[5]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[6]   AN EXISTENCE RESULT FOR NONLINEAR ELLIPTIC PROBLEMS INVOLVING CRITICAL SOBOLEV EXPONENT [J].
CAPOZZI, A ;
FORTUNATO, D ;
PALMIERI, G .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1985, 2 (06) :463-470
[7]  
CERAMI G, 1984, ANN I H POINCARE-AN, V1, P341
[8]   SOME EXISTENCE RESULTS FOR SUPERLINEAR ELLIPTIC BOUNDARY-VALUE-PROBLEMS INVOLVING CRITICAL EXPONENTS [J].
CERAMI, G ;
SOLIMINI, S ;
STRUWE, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1986, 69 (03) :289-306
[9]   Asymptotic behavior of solutions for nonlinear elliptic problems with the fractional Laplacian [J].
Choi, Woocheol ;
Kim, Seunghyeok ;
Lee, Ki-Ahm .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (11) :6531-6598
[10]   On the structure of the nodal set and asymptotics of least energy sign-changing radial solutions of the fractional Brezis-Nirenberg problem [J].
Cora, G. ;
Iacopetti, A. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 176 :226-271