Dimensions of τ-tilting modules over path algebras and preprojective algebras of Dynkin type

被引:0
作者
Aoki, Toshitaka [1 ]
Mizuno, Yuya [2 ]
机构
[1] Kobe Univ, Grad Sch Human Dev & Environm, 3-11 Tsurukabuto,Nada Ku, Kobe 6578501, Japan
[2] Osaka Metropolitan Univ, Fac Liberal Arts Sci & Global Educ, 1-1 Gakuen Cho,Naka Ku, Sakai, Osaka 5998531, Japan
关键词
tau-tilting modules; Preprojective algebras; Path algebras; Simplicial complex; EULERIAN POLYNOMIALS;
D O I
10.1016/j.jalgebra.2024.12.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce a new generating function called d-polynomial for the dimensions of tau-tilting modules over a given finite dimensional algebra. Firstly, we study basic properties of d-polynomials and show that it can be realized as a certain sum of the f-polynomials of the simplicial complexes arising from tau-rigid pairs. Secondly, we give explicit formulas of d-polynomials for preprojective algebras and path algebras of Dynkin quivers by using a close relation with WEulerian polynomials andWNarayana polynomials. Thirdly, we consider the ordinary and exponential generating functions defined from d-polynomials and give closed-form expressions in the case of preprojective algebras and path algebras of Dynkin type A. (c) 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:365 / 411
页数:47
相关论文
共 25 条
  • [1] τ-tilting theory
    Adachi, Takahide
    Iyama, Osamu
    Reiten, Idun
    [J]. COMPOSITIO MATHEMATICA, 2014, 150 (03) : 415 - 452
  • [2] Aoki T, 2023, Arxiv, DOI arXiv:2301.01498
  • [3] Aoki T, 2024, Arxiv, DOI arXiv:2203.15213
  • [4] Simplicial complexes and tilting theory for Brauer tree algebras
    Asashiba, Hideto
    Mizuno, Yuya
    Nakashima, Ken
    [J]. JOURNAL OF ALGEBRA, 2020, 551 : 119 - 153
  • [5] Assem I., 2006, London Mathematical Society Student Texts, V65
  • [6] THE PREPROJECTIVE ALGEBRA OF A TAME HEREDITARY ARTIN ALGEBRA
    BAER, D
    GEIGLE, W
    LENZING, H
    [J]. COMMUNICATIONS IN ALGEBRA, 1987, 15 (1-2) : 425 - 457
  • [7] Bjorner Anders, 2005, Graduate Texts in Mathemat-ies, V231
  • [8] Q-EULERIAN POLYNOMIALS ARISING FROM COXETER GROUPS
    BRENTI, F
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 1994, 15 (05) : 417 - 441
  • [9] On the Eulerian polynomials of type D
    Chow, CO
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2003, 24 (04) : 391 - 408
  • [10] τ-Tilting Finite Algebras, Bricks, and -Vectors
    Demonet, Laurent
    Iyama, Osamu
    Jasso, Gustavo
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (03) : 852 - 892