Active galactic nucleus formation channel for stellar binary black holes

被引:1
|
作者
Yang, Shu-Cheng [1 ]
Tagawa, Hiromichi [1 ]
Han, Wen-Biao [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Shanghai Astron Observ, Shanghai 200030, Peoples R China
[2] Univ Chinese Acad Sci, Hangzhou Inst Adv Study, Hangzhou 310124, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
来源
CHINESE SCIENCE BULLETIN-CHINESE | 2025年 / 70卷 / 03期
关键词
active galactic nucleus; binary black hole; gravitational wave; accretion disk; MASS-RATIO INSPIRALS; AGN DISCS; DYNAMICAL FRICTION; THERMAL TORQUES; EVOLUTION; MIGRATION; ACCRETION; MERGERS; PLANETARY; EMISSION;
D O I
10.1360/TB-2024-0656
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Ground-based gravitational wave detectors such as the Laser Interferometer Gravitational-Wave Observatory (LIGO) have detected hundreds of compact binary coalescences, most of which are binary black hole mergers. The astrophysical origin and formation channel of these stellar binary black hole mergers is a fundamental problem in astrophysics. Among them, the active galactic nucleus (AGN) may play an important role in forming gravitational wave sources of some binary black holes. This paper reviews the formation mechanisms of stellar binary black holes on AGN disks, gives some astrophysical characteristics of such binary black holes, and discusses how to determine whether binary black holes come from AGN disks by gravitational and electromagnetic wave observations. Compact objects, including stellar-mass black holes, can be captured and embedded into AGN disks through dynamic interactions between nuclear star clusters and the AGN disk. Once inside the disk, these black holes interact with the surrounding gas, leading to migration. Black holes may become trapped in certain specific regions due to the accretion disk's physical conditions, commonly called migration traps. On the other hand, black holes can also open a gap in the AGN disk. In this case, the black holes interact with the gas that enters the gap, causing their migration speed to slow down. In AGN disks, black holes are expected to cluster in these migration traps and gaps. Due to dynamical effects or interactions with the gas in these regions, the black holes move closer together and eventually merge. Binary black holes formed within AGN disks exhibit a range of astrophysical characteristics. Black holes merged in the inner regions of the disk typically have lower mass ratios and higher expected effective spin parameters. In contrast, binary black holes merged in the disk's outer regions tend to have larger mass ratios, with their effective spin parameters distributed around zero. Additionally, binary black hole systems in AGN disks may show high orbital eccentricities, which could leave distinct imprints on the gravitational wave signals. One key feature of mergers occurring within AGN disks, due to the gas-rich environment, is that the gravitational wave signals produced by these mergers may be accompanied by electromagnetic radiation. So far, nine candidate electromagnetic counterparts have been proposed, associated with events such as GW150914 and GW190521. Observing gravitational wave events from binary black hole mergers, alongside their potential electromagnetic counterparts, could provide critical evidences to help analyze the environments where such mergers occur. This, in turn, would enhance our understanding of the mechanisms leading to binary black hole formation and mergers.
引用
收藏
页码:353 / 362
页数:10
相关论文
共 108 条
  • [1] Advanced LIGO
    Aasi, J.
    Abbott, B. P.
    Abbott, R.
    Abbott, T.
    Abernathy, M. R.
    Ackley, K.
    Adams, C.
    Adams, T.
    Addesso, P.
    Adhikari, R. X.
    Adya, V.
    Affeldt, C.
    Aggarwal, N.
    Aguiar, O. D.
    Ain, A.
    Ajith, P.
    Alemic, A.
    Allen, B.
    Amariutei, D.
    Anderson, S. B.
    Anderson, W. G.
    Arai, K.
    Araya, M. C.
    Arceneaux, C.
    Areeda, J. S.
    Ashton, G.
    Ast, S.
    Aston, S. M.
    Aufmuth, P.
    Aulbert, C.
    Aylott, B. E.
    Babak, S.
    Baker, P. T.
    Ballmer, S. W.
    Barayoga, J. C.
    Barbet, M.
    Barclay, S.
    Barish, B. C.
    Barker, D.
    Barr, B.
    Barsotti, L.
    Bartlett, J.
    Barton, M. A.
    Bartos, I.
    Bassiri, R.
    Batch, J. C.
    Baune, C.
    Behnke, B.
    Bell, A. S.
    Bell, C.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (07)
  • [2] Abbott B.P., 2019, Physical Review X, V9, P031040
  • [3] Abbott R., 2021, PHYS REV D, V103
  • [4] Abbott R, 2021, arXiv, V11
  • [5] Abbott R., 2020, Phys. Rev. Lett, V125, P101102
  • [6] Advanced Virgo: a second-generation interferometric gravitational wave detector
    Acernese, F.
    Agathos, M.
    Agatsuma, K.
    Aisa, D.
    Allemandou, N.
    Allocca, A.
    Amarni, J.
    Astone, P.
    Balestri, G.
    Ballardin, G.
    Barone, F.
    Baronick, J-P
    Barsuglia, M.
    Basti, A.
    Basti, F.
    Bauer, Th S.
    Bavigadda, V.
    Bejger, M.
    Beker, M. G.
    Belczynski, C.
    Bersanetti, D.
    Bertolini, A.
    Bitossi, M.
    Bizouard, M. A.
    Bloemen, S.
    Blom, M.
    Boer, M.
    Bogaert, G.
    Bondi, D.
    Bondu, F.
    Bonelli, L.
    Bonnand, R.
    Boschi, V.
    Bosi, L.
    Bouedo, T.
    Bradaschia, C.
    Branchesi, M.
    Briant, T.
    Brillet, A.
    Brisson, V.
    Bulik, T.
    Bulten, H. J.
    Buskulic, D.
    Buy, C.
    Cagnoli, G.
    Calloni, E.
    Campeggi, C.
    Canuel, B.
    Carbognani, F.
    Cavalier, F.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (02)
  • [7] Overview of KAGRA: Detector design and construction history
    Akutsu, T.
    Ando, M.
    Arai, K.
    Arai, Y.
    Araki, S.
    Araya, A.
    Aritomi, N.
    Aso, Y.
    Bae, S.
    Bae, Y.
    Baiotti, L.
    Bajpai, R.
    Barton, M. A.
    Cannon, K.
    Capocasa, E.
    Chan, M.
    Chen, C.
    Chen, K.
    Chen, Y.
    Chu, H.
    Chu, Y-K
    Eguchi, S.
    Enomoto, Y.
    Flaminio, R.
    Fujii, Y.
    Fukunaga, M.
    Fukushima, M.
    Ge, G.
    Hagiwara, A.
    Haino, S.
    Hasegawa, K.
    Hayakawa, H.
    Hayama, K.
    Himemoto, Y.
    Hiranuma, Y.
    Hirata, N.
    Hirose, E.
    Hong, Z.
    Hsieh, B. H.
    Huang, C-Z
    Huang, P.
    Huang, Y.
    Ikenoue, B.
    Imam, S.
    Inayoshi, K.
    Inoue, Y.
    Ioka, K.
    Itoh, Y.
    Izumi, K.
    Jung, K.
    [J]. PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2021, 2021 (05):
  • [8] Coalescing black hole binaries from globular clusters: mass distributions and comparison to gravitational wave data from GWTC-3
    Antonini, Fabio
    Gieles, Mark
    Dosopoulou, Fani
    Chattopadhyay, Debatri
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 522 (01) : 466 - 476
  • [9] Current observations are insufficient to confidently associate the binary black hole merger GW190521 with AGN J124942.3+344929
    Ashton, Gregory
    Ackley, Kendall
    Hernandez, Ignacio Magana
    Piotrzkowski, Brandon
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2021, 38 (23)
  • [10] Searching for electromagnetic counterpart of LIGO gravitational waves in the Fermi GBM data with ADWO
    Bagoly, Zsolt
    Szecsi, Dorottya
    Balazs, Lajos G.
    Csabai, Istvan
    Horvath, Istvan
    Dobos, Laszlo
    Lichtenberger, Janos
    Toth, L. Viktor
    [J]. ASTRONOMY & ASTROPHYSICS, 2016, 593