Opentrons for automated and high-throughput viscometry

被引:0
作者
Soh, Beatrice W. [1 ]
Chitre, Aniket [2 ]
Tan, Shu Zheng [3 ]
Wang, Yuhan [1 ]
Yi, Yinqi [1 ]
Soh, Wendy [3 ]
Hippalgaonkar, Kedar [1 ,3 ]
Wilson, D. Ian [2 ]
机构
[1] Agcy ScienceTechnol & Res ASTAR, Inst Mat Res & Engn, Singapore 138634, Singapore
[2] Univ Cambridge, Dept Chem Engn & Biotechnol, Philippa Fawcett Dr, Cambridge CB3 0AS, England
[3] Nanyang Technol Univ, Dept Mat Sci & Engn, Singapore 117575, Singapore
来源
DIGITAL DISCOVERY | 2025年 / 4卷 / 03期
关键词
VISCOSITY; FLOW;
D O I
10.1039/d4dd00368c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We present an improved high-throughput proxy viscometer based on the Opentrons (OT-2) automated liquid handler. The working principle of the viscometer lies in the differing rates at which air-displacement pipettes dispense liquids of different viscosities. The operating protocol involves measuring the amount of liquid dispensed over a set time for given dispense conditions. Data collected at different set dispense flow rates was used to train an ensemble machine learning regressor to predict Newtonian liquid viscosity in the range of 20-20 000 cP, with similar to 450 cP error (similar to 8% relative to sample mean). A phenomenological model predicting the observed trends is presented and used to extend the applicability of the proxy viscometer to simple non-Newtonian liquids. As proof-of-concept, we demonstrate the ability of the proxy viscometer to characterize the rheological behavior of two types of power-law fluids.
引用
收藏
页码:711 / 722
页数:12
相关论文
共 27 条
  • [1] Accelerated automated screening of viscous graphene suspensions with various surfactants for optimal electrical conductivity
    Bash, Daniil
    Chenardy, Frederick Hubert
    Ren, Zekun
    Cheng, Jayce J.
    Buonassisi, Tonio
    Oliveira, Ricardo
    Kumar, Jatin N.
    Hippalgaonkar, Kedar
    [J]. DIGITAL DISCOVERY, 2022, 1 (02): : 139 - 146
  • [2] The Autonomous Formulation Laboratory: An Open Liquid Handling Platform for Formulation Discovery Using X-ray and Neutron Scattering
    Beaucage, Peter A.
    Martin, Tyler B.
    [J]. CHEMISTRY OF MATERIALS, 2023, 35 (03) : 846 - 852
  • [3] Autonomous chemical science and engineering enabled by self-driving laboratories
    Bennett, Jeffrey A.
    Abolhasani, Milad
    [J]. CURRENT OPINION IN CHEMICAL ENGINEERING, 2022, 36
  • [4] Chitre A., MASS BALANCE INTEGRA
  • [5] Accelerating Formulation Design via Machine Learning: Generating a High-throughput Shampoo Formulations Dataset
    Chitre, Aniket
    Querimit, Robert C. M.
    Rihm, Simon D.
    Karan, Dogancan
    Zhu, Benchuan
    Wang, Ke
    Wang, Long
    Hippalgaonkar, Kedar
    Lapkin, Alexei A.
    [J]. SCIENTIFIC DATA, 2024, 11 (01)
  • [6] Dispensing of rheologically complex fluids: The map of misery
    Clasen, Christian
    Phillips, Paul M.
    Palangetic, Ljiljana
    Vermant, Jan
    [J]. AICHE JOURNAL, 2012, 58 (10) : 3242 - 3255
  • [7] CONVERGING FLOW OF POLYMER MELTS
    HUANG, DC
    SHROFF, RN
    [J]. JOURNAL OF RHEOLOGY, 1981, 25 (06) : 605 - 617
  • [8] A Novel High-Throughput Viscometer
    Deshmukh, Suraj
    Bishop, Matthew T.
    Dermody, Daniel
    Dietsche, Laura
    Kuo, Tzu-Chi
    Mushrush, Melissa
    Harris, Keith
    Zieman, Jonathan
    Morabito, Paul
    Orvosh, Brian
    Patrick, Don
    [J]. ACS COMBINATORIAL SCIENCE, 2016, 18 (07) : 405 - 414
  • [9] A multiscale approach for the integrated design of emulsified cosmetic products
    Gomez, Ingrid
    Calvo, Fernando
    Gomez, Jorge M.
    Ricardez-Sandoval, Luis
    Alvarez, Oscar
    [J]. CHEMICAL ENGINEERING SCIENCE, 2022, 250
  • [10] A New Machine-Learning Tool for Fast Estimation of Liquid Viscosity. Application to Cosmetic Oils
    Goussard, Valentin
    Duprat, Francois
    Ploix, Jean-Luc
    Dreyfus, Gerard
    Nardello-Rataj, Veronique
    Aubry, Jean-Marie
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2020, 60 (04) : 2012 - 2023