Material Decomposition in Photon-Counting CT: A Deep Learning Approach Driven by Detector Physics and ASIC Modeling

被引:1
作者
Yu, Xiaopeng [1 ]
Wu, Qianyu [1 ,3 ]
Qin, Wenhui [1 ]
Zhong, Tao [1 ]
Su, Mengqing [1 ,3 ]
Ma, Jinglu [2 ]
Zhang, Yikun [3 ]
Ji, Xu [3 ]
Quan, Guotao [2 ]
Chen, Yang [3 ]
Du, Yanfeng [2 ]
Lai, Xiaochun [1 ]
机构
[1] ShanghaiTech Univ, Sch Biomed Engn, Shanghai, Peoples R China
[2] Shanghai United Imaging Healthcare Co Ltd, Shanghai, Peoples R China
[3] Southeast Univ, Sch Comp Sci & Engn, Nanjing, Jiangsu, Peoples R China
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT VII | 2024年 / 15007卷
关键词
Photon-counting CT; Image reconstruction; Deep learning; Material decomposition; DUAL-ENERGY CT; MULTIMATERIAL DECOMPOSITION; RECONSTRUCTION;
D O I
10.1007/978-3-031-72104-5_44
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Photon-counting computed tomography (PCCT) based on photon-counting detectors (PCDs) stands out as a cutting-edge CT technology, offering enhanced spatial resolution, reduced radiation dose, and advanced material decomposition capabilities. Despite its recognized advantages, challenges arise from real-world phenomena such as PCD charge-sharing effects, application-specific integrated circuit (ASIC) pile-up, and spectrum shift, introducing a disparity between actual physical effects and the assumptions made in ideal physics models. This misalignment can lead to substantial errors during image reconstruction processes, particularly in material decomposition. In this paper, we introduce a novel detector physics and ASIC model-guided deep learning system model tailored for PCCT. This model adeptly captures the comprehensive response of the PCCT system, encompassing both detector and ASIC responses. We present experimental results demonstrating the model's exceptional accuracy and robustness. Key advancements include reduced calibration errors, enhanced quality in material decomposition imaging, and improved quantitative consistency. This model represents a significant stride in bridging the gap between theoretical assumptions and practical complexities of PCCT, paving the way for more precise and reliable medical imaging.
引用
收藏
页码:457 / 466
页数:10
相关论文
共 20 条
[1]   Clinical evaluation of dual-energy bone removal in CT angiography of the head and neck: comparison with conventional bone-subtraction CT angiography [J].
Deng, K. ;
Liu, C. ;
Ma, R. ;
Sun, C. ;
Wang, X. -m. ;
Ma, Z. -t. ;
Sun, X. -l. .
CLINICAL RADIOLOGY, 2009, 64 (05) :534-541
[2]  
Eguizabal A., 2022, arXiv
[3]   An experimental method to correct low-frequency concentric artifacts in photon counting CT [J].
Feng, Mang ;
Ji, Xu ;
Zhang, Ran ;
Treb, Kevin ;
Dingle, Aaron M. ;
Li, Ke .
PHYSICS IN MEDICINE AND BIOLOGY, 2021, 66 (17)
[4]   GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy [J].
Jan, S. ;
Benoit, D. ;
Becheva, E. ;
Carlier, T. ;
Cassol, F. ;
Descourt, P. ;
Frisson, T. ;
Grevillot, L. ;
Guigues, L. ;
Maigne, L. ;
Morel, C. ;
Perrot, Y. ;
Rehfeld, N. ;
Sarrut, D. ;
Schaart, D. R. ;
Stute, S. ;
Pietrzyk, U. ;
Visvikis, D. ;
Zahra, N. ;
Buvat, I. .
PHYSICS IN MEDICINE AND BIOLOGY, 2011, 56 (04) :881-901
[5]  
Johnson T., 2011, Dual Energy CT in Clinical Practice, V201, DOI [10.1007/978-3-642-01740-7, DOI 10.1007/978-3-642-01740-7]
[6]   Photon-counting Detector CT: System Design and Clinical Applications of an Emerging Technology [J].
Leng, Shuai ;
Bruesewitz, Michael ;
Tao, Shengzhen ;
Rajendran, Kishore ;
Halaweish, Ahmed F. ;
Campeau, Norbert G. ;
Fletcher, Joel G. ;
McCollough, Cynthia H. .
RADIOGRAPHICS, 2019, 39 (03) :729-743
[7]   Multi-Material Decomposition Using Statistical Image Reconstruction for Spectral CT [J].
Long, Yong ;
Fessler, Jeffrey A. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2014, 33 (08) :1614-1626
[8]   A Flexible Method for Multi-Material Decomposition of Dual-Energy CT Images [J].
Mendonca, Paulo R. S. ;
Lamb, Peter ;
Sahani, Dushyant V. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2014, 33 (01) :99-116
[9]   Dual-Energy CT: A Promising New Technique for Assessment of the Musculoskeletal System [J].
Nicolaou, Savvakis ;
Liang, Teresa ;
Murphy, Darra T. ;
Korzan, Jeff R. ;
Ouellette, Hugue ;
Munk, Peter .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2012, 199 (05) :S78-S86
[10]   X-Ray Transmittance Modeling-Based Material Decomposition Using a Photon-Counting Detector CT System [J].
Lee, Okkyun ;
Rajendran, Kishore ;
Polster, Christoph ;
Stierstorfer, Karl ;
Kappler, Steffen ;
Leng, Shuai ;
McCollough, Cynthia H. ;
Taguchi, Katsuyuki .
IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2021, 5 (04) :508-516