ON POWERS OF HAMILTON CYCLES IN RAMSEY-TURAN THEORY

被引:0
作者
Chen, Ming [1 ]
Han, Jie [2 ,3 ]
Tang, Yantao [4 ]
Yang, Donglei [5 ]
机构
[1] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Peoples R China
[2] Beijing Inst Technol, Sch Sch Math & Stat, Beijing 100081, Peoples R China
[3] Beijing Inst Technol, Ctr Appl Math, Beijing 100081, Peoples R China
[4] Shandong Univ, Zhongtai Securities Inst Financial Studies, Jinan 250100, Peoples R China
[5] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
关键词
powers of Hamilton cycles; absorption method; Ramsey-Turan theory; GRAPHS; SQUARE;
D O I
10.1137/24M163709X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that for r is an element of N with r >= 2 and mu > 0, there exist alpha > 0 and n(0) such that for every n >= n(0) , every n-vertex graph G with delta(G) >= (1- 1/r + mu) n and alpha(G) <= alpha n contains an r th power of a Hamilton cycle. We also show that the minimum degree condition is asymptotically sharp for r = 2,3 and the r = 2 case was recently conjectured by Staden and Treglown.
引用
收藏
页码:2489 / 2508
页数:20
相关论文
共 21 条
  • [1] Triangle Factors of Graphs Without Large Independent Sets and of Weighted Graphs
    Balogh, Jozsef
    Molla, Theodore
    Sharifzadeh, Maryam
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2016, 49 (04) : 669 - 693
  • [2] Embedding clique-factors in graphs with low l-independence number
    Chang, Fan
    Han, Jie
    Kim, Jaehoon
    Wang, Guanghui
    Yang, Donglei
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2023, 161 : 301 - 330
  • [3] Chen M, 2022, Arxiv, DOI arXiv:2207.03058
  • [4] Dirac G. A., 1952, Proc. Lond. Math. Soc., P69, DOI [10.1112/plms/s3-2.1.69, DOI 10.1112/PLMS/S3-2.1.69]
  • [5] MORE RESULTS ON RAMSEY TURAN TYPE PROBLEMS
    ERDOS, P
    HAJNAL, A
    SOS, VT
    SZEMEREDI, E
    [J]. COMBINATORICA, 1983, 3 (01) : 69 - 81
  • [6] ERDOS P., 1982, Studia Sci. Math. Hungar, V14, P27
  • [7] THE SQUARE OF A HAMILTONIAN CYCLE
    FAN, GH
    HAGGKVIST, R
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 1994, 7 (02) : 203 - 212
  • [8] THE SQUARE OF PATHS AND CYCLES
    FAN, GH
    KIERSTEAD, HA
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1995, 63 (01) : 55 - 64
  • [9] HAGGKVIST R., 1979, On F-Hamiltonian Graphs
  • [10] Clique-factors in graphs with sublinear ι-independence number
    Han, Jie
    Hu, Ping
    Wang, Guanghui
    Yang, Donglei
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2023, 32 (04) : 665 - 681