Fire-Resistant Carboxylate-Based Electrolyte for Safe and Wide-Temperature Lithium-Ion Batteries

被引:3
作者
Yang, Yi [1 ]
Yao, Nan [2 ]
Yao, Yu-Xing [2 ]
Xu, Lei [1 ]
Wen, Xue-Fei [3 ]
Li, Zeheng [2 ]
Yang, Zhuo-Lin [1 ]
Yan, Chong [1 ,3 ]
Huang, Jia-Qi [1 ,4 ]
机构
[1] Beijing Inst Technol, Adv Res Inst Multidisciplinary Sci, Sch Mat Sci & Engn, Beijing 100081, Peoples R China
[2] Tsinghua Univ, Dept Chem Engn, Beijing Key Lab Green Chem React Engn & Technol, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Shanxi Res Inst Clean Energy, Taiyuan 030032, Peoples R China
[4] Yonsei Univ, Dept Chem & Biomol Engn, Seoul 03722, South Korea
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
carboxylate; lithium-ion batteries; nonflammability; solid electrolyte interphase; wide temperature range;
D O I
10.1002/aenm.202403183
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The combustion accident and narrow temperature range of rechargeable lithium-ion batteries (LIBs) limit its further expansion. Non-flammable solvents with a wide liquid range hold the key to safer LIBs with a wide temperature adaptability. Herein, a carboxylate-based weak interaction electrolyte is achieved by molecular design, which consists of EDFA (ethyl difluoroacetate), 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropylether, and fluoroethylene carbonate. The inherent non-flammable and wide liquid-rang features of the electrolyte ensure the safety as well as the wide operating temperature of a battery. The high affinity between FSI- anions and counter Li+ guarantees a stable and inorganic-components-dominated electrolyte/electrode interphase with rapid Li+ de-solvation kinetics, leading to perfect compatibility with graphite and avoiding side reactions between lithiated graphite and electrolyte. The rationally designed EDFA-based electrolyte enables the thick graphite (4.4 mAh cm(-2)) || LiNi0.8Co0.1Mn0.1O2 (4.0 mAh cm(-2)) cells to operate efficiently in a wide temperature range from -30 to 45 degrees C. The proposed EDFA-based electrolyte enables the commercial 1.0 Ah graphite || NCA (LiNi0.8Co0.15Al0.05O2, >3.2 mAh cm(-2)) pouch cells stably cycle for >1100 cycles (>85% capacity retention) at 0.3C and >800 cycles at 1.0C (>92% capacity retention), while also endows the graphite/SiOx and Li anode-based batteries with high energy density, long lifespan and high safety.
引用
收藏
页数:11
相关论文
共 23 条
[1]   Design of Fire-Resistant Liquid Electrolyte Formulation for Safe and Long-Cycled Lithium-Ion Batteries [J].
An, Kihun ;
Tran, Yen Hai Thi ;
Kwak, Sehyun ;
Han, Jisoo ;
Song, Seung-Wan .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (48)
[2]   A review on energy chemistry of fast-charging anodes [J].
Cai, Wenlong ;
Yao, Yu-Xing ;
Zhu, Gao-Long ;
Yan, Chong ;
Jiang, Li-Li ;
He, Chuanxin ;
Huang, Jia-Qi ;
Zhang, Qiang .
CHEMICAL SOCIETY REVIEWS, 2020, 49 (12) :3806-3833
[3]   Breaking solvation dominance of ethylene carbonate via molecular charge engineering enables lower temperature battery [J].
Chen, Yuqing ;
He, Qiu ;
Zhao, Yun ;
Zhou, Wang ;
Xiao, Peitao ;
Gao, Peng ;
Tavajohi, Naser ;
Tu, Jian ;
Li, Baohua ;
He, Xiangming ;
Xing, Lidan ;
Fan, Xiulin ;
Liu, Jilei .
NATURE COMMUNICATIONS, 2023, 14 (01)
[4]   Enabling the Low-Temperature Cycling of NMC∥Graphite Pouch Cells with an Ester-Based Electrolyte [J].
Cho, Yoon-Gyo ;
Li, Mingqian ;
Holoubek, John ;
Li, Weikang ;
Yin, Yijie ;
Meng, Ying Shirley ;
Chen, Zheng .
ACS ENERGY LETTERS, 2021, 6 (05) :2016-2023
[5]   Electric Vehicles Batteries: Requirements and Challenges [J].
Deng, Jie ;
Bae, Chulheung ;
Denlinger, Adam ;
Miller, Theodore .
JOULE, 2020, 4 (03) :511-515
[6]   All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents [J].
Fan, Xiulin ;
Ji, Xiao ;
Chen, Long ;
Chen, Ji ;
Deng, Tao ;
Han, Fudong ;
Yue, Jie ;
Piao, Nan ;
Wang, Ruixing ;
Zhou, Xiuquan ;
Xiao, Xuezhang ;
Chen, Lixin ;
Wang, Chunsheng .
NATURE ENERGY, 2019, 4 (10) :882-890
[7]   Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries [J].
Fan, Xiulin ;
Chen, Long ;
Borodin, Oleg ;
Ji, Xiao ;
Chen, Ji ;
Hou, Singyuk ;
Deng, Tao ;
Zheng, Jing ;
Yang, Chongyin ;
Liou, Sz-Chian ;
Amine, Khalil ;
Xu, Kang ;
Wang, Chunsheng .
NATURE NANOTECHNOLOGY, 2018, 13 (08) :715-+
[8]   Thermal runaway of Lithium-ion batteries employing LiN(SO2F)2-based concentrated electrolytes [J].
Hou, Junxian ;
Lu, Languang ;
Wang, Li ;
Ohma, Atsushi ;
Ren, Dongsheng ;
Feng, Xuning ;
Li, Yan ;
Li, Yalun ;
Ootani, Issei ;
Han, Xuebing ;
Ren, Weining ;
He, Xiangming ;
Nitta, Yoshiaki ;
Ouyang, Minggao .
NATURE COMMUNICATIONS, 2020, 11 (01)
[9]   Low-Temperature Electrolyte Design for Lithium-Ion Batteries: Prospect and Challenges [J].
Li, Qian ;
Liu, Gang ;
Cheng, Haoran ;
Sun, Qujiang ;
Zhang, Junli ;
Ming, Jun .
CHEMISTRY-A EUROPEAN JOURNAL, 2021, 27 (64) :15842-15865
[10]  
Li Z., 2023, ANGEW CHEM-GER EDIT, V62