Detection of late gadolinium enhancement in patients with hypertrophic cardiomyopathy using machine learning

被引:1
作者
Akita, Keitaro [1 ,2 ]
Suwa, Kenichiro [2 ]
Ohno, Kazuto [2 ]
Weiner, Shepard D. [1 ]
Tower-Rader, Albree [3 ]
Fifer, Michael A. [3 ]
Maekawa, Yuichiro [2 ]
Shimada, Yuichi J. [1 ]
机构
[1] Columbia Univ, Dept Med, Div Cardiol, Div Irving Med Ctr, 622 West 168th St,PH 3-342, New York, NY 10032 USA
[2] Hamamatsu Univ, Div Cardiol, Internal Med 3, Sch Med, Hamamatsu, Shizuoka, Japan
[3] Harvard Med Sch, Massachusetts Gen Hosp, Dept Med, Cardiol Div, Boston, MA USA
关键词
Hypertrophic cardiomyopathy; Machine learning; Late gadolinium enhancement; Cardiac magnetic resonance imaging; CARDIAC MAGNETIC-RESONANCE; PROGNOSTIC VALUE; PREDICTION; DEATH; RISK; MANAGEMENT; FIBROSIS; OUTCOMES; HCM;
D O I
10.1016/j.ijcard.2024.132911
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Late gadolinium enhancement (LGE) on cardiac magnetic resonance (CMR) in hypertrophic cardiomyopathy (HCM) typically represents myocardial fibrosis and may lead to fatal ventricular arrhythmias. However, CMR is resource-intensive and sometimes contraindicated. Thus, in patients with HCM, we aimed to detect LGE on CMR by applying machine learning (ML) algorithm to clinical parameters. Methods and results: In this trans-Pacific multicenter study of HCM, a ML model was developed to distinguish the presence or absence of LGE on CMR by ridge classification method using 22 clinical parameters including 9 echocardiographic data. Among 742 patients in this cohort, the ML model was constructed in 2 institutions in the United States (training set, n = 554) and tested using data from an institution in Japan (test set, n = 188). LGE was detected in 299 patients (54%) in the training set and 76 patients (40%) in the test set. In the test set, the area under the receiver-operating-characteristic curve (AUC) of the ML model derived from the training set was 0.77 (95% confidence interval [CI] 0.70-0.84). When compared with a reference model constructed with 3 conventional risk factors for LGE on CMR (AUC 0.69 [95% CI 0.61-0.77]), the ML model outperformed the reference model (DeLong's test P = 0.01). Conclusions: This trans-Pacific study demonstrates that ML analysis of clinical parameters can distinguish the presence of LGE on CMR in patients with HCM. Our ML model would help physicians identify patients with HCM in whom the pre-test probability of LGE is high, and therefore CMR will have higher utility.
引用
收藏
页数:7
相关论文
共 44 条
[1]   Clinical Outcomes in Hypertrophic Cardiomyopathy and No Late Gadolinium Enhancement [J].
Abdelfattah, Omar M. ;
Jacquemyn, Xander ;
Aglan, Amro ;
Rowin, Ethan ;
Maron, Martin ;
Martinez, Matthew W. .
JACC-CARDIOVASCULAR IMAGING, 2024, 17 (11) :1387-1388
[2]   2023 ESC Guidelines for the management of cardiomyopathies Developed by the task force on the management of cardiomyopathies of the European Society of Cardiology (ESC) [J].
Arbelo, Elena ;
Protonotarios, Alexandros ;
Gimeno, Juan R. ;
Arbustini, Eloisa ;
Barriales-Villa, Roberto ;
Basso, Cristina ;
Bezzina, Connie R. ;
Biagini, Elena ;
Blom, Nico A. ;
de Boer, Rudolf A. ;
De Winter, Tim ;
Elliott, Perry M. ;
Flather, Marcus ;
Garcia-Pavia, Pablo ;
Haugaa, Kristina H. ;
Ingles, Jodie ;
Jurcut, Ruxandra Oana ;
Klaassen, Sabine ;
Limongelli, Giuseppe ;
Loeys, Bart ;
Mogensen, Jens ;
Olivotto, Iacopo ;
Pantazis, Antonis ;
Sharma, Sanjay ;
Van Tintelen, J. Peter ;
Ware, James S. ;
Kaski, Juan Pablo .
EUROPEAN HEART JOURNAL, 2023, 44 (37) :3503-3626
[3]   Native T1 and T2 provide distinctive signatures in hypertrophic cardiac conditions - Comparison of uremic, hypertensive and hypertrophic cardiomyopathy [J].
Arcari, Luca ;
Hinojar, Rocio ;
Engel, Juergen ;
Freiwald, Tilo ;
Platschek, Steffen ;
Zainal, Hafisyatul ;
Zhou, Hui ;
Vasquez, Moises ;
Keller, Till ;
Rolf, Andreas ;
Geiger, Helmut ;
Hauser, Ingeborg ;
Vogl, Thomas J. ;
Zeiher, Andreas M. ;
Volpe, Massimo ;
Nagel, Eike ;
Puntmann, Valentina O. .
INTERNATIONAL JOURNAL OF CARDIOLOGY, 2020, 306 :102-108
[4]   Distinct non-ischemic myocardial late gadolinium enhancement lesions in patients with type 2 diabetes [J].
Bojer, Annemie Stege ;
Sorensen, Martin Heyn ;
Vejlstrup, Niels ;
Goetze, Jens P. ;
Gaede, Peter ;
Madsen, Per Lav .
CARDIOVASCULAR DIABETOLOGY, 2020, 19 (01)
[5]   Prognostic Value of Quantitative Contrast-Enhanced Cardiovascular Magnetic Resonance for the Evaluation of Sudden Death Risk in Patients With Hypertrophic Cardiomyopathy [J].
Chan, Raymond H. ;
Maron, Barry J. ;
Olivotto, Iacopo ;
Pencina, Michael J. ;
Assenza, Gabriele Egidy ;
Haas, Tammy ;
Lesser, John R. ;
Gruner, Christiane ;
Crean, Andrew M. ;
Rakowski, Harry ;
Udelson, James E. ;
Rowin, Ethan ;
Lombardi, Massimo ;
Cecchi, Franco ;
Tomberli, Benedetta ;
Spirito, Paolo ;
Formisano, Francesco ;
Biagini, Elena ;
Rapezzi, Claudio ;
De Cecco, Carlo Nicola ;
Autore, Camillo ;
Cook, E. Francis ;
Hong, Susie N. ;
Gibson, C. Michael ;
Manning, Warren J. ;
Appelbaum, Evan ;
Maron, Martin S. .
CIRCULATION, 2014, 130 (06) :484-495
[6]   Performance of 12-lead electrocardiogram Selvester QRS scoring criteria to diagnose myocardial scar in patients with hypertrophic cardiomyopathy [J].
Chen Shi ;
Wang Xuefeng ;
Huang Liwei ;
Chen Yucheng ;
Zhang, Qing .
ANNALS OF NONINVASIVE ELECTROCARDIOLOGY, 2020, 25 (05)
[7]   Effect of sarcomere and mitochondria-related mutations on myocardial fibrosis in patients with hypertrophic cardiomyopathy [J].
Chung, Hyemoon ;
Kim, Yoonjung ;
Park, Chul-Hwan ;
Kim, Jong-Youn ;
Min, Pil-Ki ;
Yoon, Young Won ;
Kim, Tae Hoon ;
Lee, Byoung Kwon ;
Hong, Bum-Kee ;
Rim, Se-Joong ;
Kwon, Hyuck Moon ;
Lee, Kyung-A ;
Choi, Eui-Young .
JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2021, 23 (01)
[8]   Incremental benefit of late gadolinium cardiac magnetic resonance imaging for risk stratification in patients with hypertrophic cardiomyopathy [J].
Doesch, Christina ;
Tulumen, Erol ;
Akin, Ibrahim ;
Rudic, Boris ;
Kuschyk, Juergen ;
El-Battrawy, Ibrahim ;
Becher, Tobias ;
Budjan, Johannes ;
Smakic, Arman ;
Schoenberg, Stefan O. ;
Borggrefe, Martin ;
Papavassiliu, Theano .
SCIENTIFIC REPORTS, 2017, 7
[9]   Radiomics and deep learning for myocardial scar screening in hypertrophic cardiomyopathy [J].
Fahmy, Ahmed S. ;
Rowin, Ethan J. ;
Arafati, Arghavan ;
Al-Otaibi, Talal ;
Maron, Martin S. ;
Nezafat, Reza .
JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2022, 24 (01)
[10]   Prediction of Extensive Myocardial Fibrosis in Nonhigh Risk Patients With Hypertrophic Cardiomyopathy [J].
Gommans, D. H. Frank ;
Cramer, G. Etienne ;
Fouraux, Michael A. ;
Bakker, Jeannette ;
Michels, Michelle ;
Dieker, Hendrik-Jan ;
Timmermans, Janneke ;
Marcelis, Carlo L. M. ;
Verheugt, Freek W. A. ;
de Boer, Menko-Jan ;
Kofflard, Marcel J. M. ;
de Boer, Rudolf A. ;
Brouwer, Marc A. .
AMERICAN JOURNAL OF CARDIOLOGY, 2018, 122 (03) :483-489