THE HODGE LAPLACIAN OPERATOR ON 1-FORMS ON IHI AND 1-FORM Ea1

被引:0
作者
Romero, Otto [1 ]
机构
[1] Ctr Invest Matemat AC, Jalisco S-N, Guanajuato 36023, Gto, Mexico
关键词
Eisenstein series; Hodge Laplacian;
D O I
10.7169/facm/2144
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
As is well known, we can average the eigenfunction y s of the hyperbolic Laplacian on the hyperbolic plane by Gamma a lattice in SL(2, R) to obtain an automorphic form: the nonholomorphic Eisenstein series Ea(z, s ) . In this note, we choose a particular eigenfunction ysdx of the Hodge-Laplace operator for 1-forms on the hyperbolic plane IHI. We can average ysdx by Gamma to define a 1-form E 1 ( ( z, v ) , s ) . a We shall prove that E 1 efficients. Also, we evaluate the integral f a admits a Fourier expansion and calculates the corresponding co gamma Ea1 for when gamma is a lifting of horo cycles and closed geodesics in the unit tangent bundle. Finally, we will obtain an analog to the Rankin-Selberg method for E a 1 via horo cycles.
引用
收藏
页码:237 / 254
页数:18
相关论文
共 16 条
[1]  
[Anonymous], 1971, Annals of Mathematics Studies)
[2]  
Burrin C, 2021, Arxiv, DOI arXiv:2012.01147
[3]  
Falliero T, 2000, MATH ANN, V317, P263, DOI 10.1007/s002080000093
[4]  
GELBART S, 1975, ANN MATH STUDIES, V83
[5]  
Gradshteyn I. S., 2007, Table of Integrals, Series, and Products, V7th ed.
[6]  
Iwaniec H., 2002, GRAD STUD MATH, V53
[7]  
Keen L., 2007, London Mathematical Society Student Texts, V68, DOI [10.1017/CBO9780511618789, DOI 10.1017/CBO9780511618789]
[8]  
KUBOTA T, 1973, ELEMENTARY THEORY EI
[9]  
LANGLANDS RP, 1976, LECT NOTES MATH, V544
[10]  
LUKE YL, 1962, INTEGRALS BESSEL FUN