A fractional order SIR model describing hesitancy to the COVID-19 vaccination

被引:3
作者
Caetano, Constantino [1 ]
Morgado, Luisa [2 ]
Lima, Pedro [3 ]
Hens, Niel [4 ,5 ]
Nunes, Baltazar [6 ]
机构
[1] Inst Nacl Saude Doutor Ricardo Jorge, Dept Epidemiol, P-1600609 Lisbon, Portugal
[2] Univ Tras Os Montes & Alto Douro UTAD, Dept Math, P-5000801 Vila Real, Portugal
[3] Inst Super Tecn, Dept Math, P-1049001 Lisbon, Portugal
[4] Hasselt Univ, Interuniv Inst Biostat & Stat Bioinformat, Data Sci Inst, Hasselt, Belgium
[5] Univ Antwerp, Vaccine & Infect Dis Inst, Ctr Hlth Econ Res & Modelling Infect Dis, Antwerp, Belgium
[6] Univ NOVA Lisboa, Publ Hlth Res Ctr, NOVA Natl Sch Publ Hlth, Lisbon, Portugal
关键词
Fractional derivatives; SIR model; Vaccine hesitancy; COVID-19; TRANSMISSION;
D O I
10.1016/j.apnum.2024.10.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study introduces a SIR (Susceptible-Infectious-Recovered) model using fractional derivatives to assess the population's hesitancy to the COVID-19 vaccination campaign in Portugal. Leveraging the framework developed by Angstmann [1], our approach incorporates fractional derivatives to best describe the nuanced dynamics of the vaccination process. We begin by examining the qualitative properties of the proposed model. To substantiate the inclusion of fractional derivatives, empirical data along with statistical criteria are applied. Numerical simulations are performed to compare both integer and fractional order models. An epidemiological interpretation for the fractional order of the model is provided, in the context of a vaccination campaign.
引用
收藏
页码:608 / 620
页数:13
相关论文
共 31 条
[1]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[2]   A Fractional Order Recovery SIR Model from a Stochastic Process [J].
Angstmann, C. N. ;
Henry, B. I. ;
McGann, A. V. .
BULLETIN OF MATHEMATICAL BIOLOGY, 2016, 78 (03) :468-499
[3]   A General Framework for Fractional Order Compartment Models [J].
Angstmann, Christopher N. ;
Erickson, Austen M. ;
Henry, Bruce, I ;
McGann, Anna, V ;
Murray, John M. ;
Nichols, James A. .
SIAM REVIEW, 2021, 63 (02) :375-392
[4]   An explicit numerical scheme for solving fractional order compartment models from the master equations of a stochastic process [J].
Angstmann, Christopher N. ;
Henry, Bruce, I ;
Jacobs, Byron A. ;
McGann, Anna, V .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 68 :188-202
[5]   A Fractional-Order Infectivity and Recovery SIR Model [J].
Angstmann, Christopher N. ;
Henry, Bruce, I ;
McGann, Anna, V .
FRACTAL AND FRACTIONAL, 2017, 1 (01) :1-11
[6]   A Numerical Confirmation of a Fractional-Order COVID-19 Model's Efficiency [J].
Batiha, Iqbal M. ;
Obeidat, Ahmad ;
Alshorm, Shameseddin ;
Alotaibi, Ahmed ;
Alsubaie, Hajid ;
Momani, Shaher ;
Albdareen, Meaad ;
Zouidi, Ferjeni ;
Eldin, Sayed M. ;
Jahanshahi, Hadi .
SYMMETRY-BASEL, 2022, 14 (12)
[7]  
Brent R.P., 2013, Algorithms for Minimization Without Derivatives
[8]   Control of COVID-19 dynamics through a fractional-order model [J].
Bushnaq, Samia ;
Saeed, Tareq ;
Torres, Delfim F. M. ;
Zeb, Anwar .
ALEXANDRIA ENGINEERING JOURNAL, 2021, 60 (04) :3587-3592
[9]  
Butcher JC., 1964, J. Aust. Math. Soc, V4, P179, DOI [10.1017/S1446788700023387, DOI 10.1017/S1446788700023387]
[10]   A LIMITED MEMORY ALGORITHM FOR BOUND CONSTRAINED OPTIMIZATION [J].
BYRD, RH ;
LU, PH ;
NOCEDAL, J ;
ZHU, CY .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1995, 16 (05) :1190-1208