Traditional virus chromatographic purification face limitations owing to the small pore sizes of conventional resins, which restrict efficient virus binding. The newly developed MLP1000 DexS, a cellulose monolith-like particle (MLP) with large continuous pores (radius of 1.5 mu m) and a sulfate pseudo-affinity ligand, facilitates virus access to intraparticle surfaces and significantly enhances binding capacity. In this study, we investigated the effectiveness of MLP1000 DexS for purifying severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from Vero cells. Using a 0.29 mL column volume, we evaluated this resin through bind-elute mode chromatography under two load volume conditions (4.5 mL and 21 mL). MLP1000 DexS exhibited superior performance under high-loading conditions, achieving a high elution recovery of 59 % for the virus compared with that of 11-17 % for the commercial resins Cellufine Sulfate and Capto DeVirS. Additionally, the dsDNA removal capacity of MLP1000 DexS was 3.0-5.3-fold higher than that of the other resins. These findings suggest that MLP1000 DexS is an effective purification material for the downstream processing of live-attenuated and inactivated coronavirus vaccine production.