Reassessing vascular endothelial growth factor (VEGF) in anti-angiogenic cancer therapy

被引:91
作者
Elebiyo, Tobiloba C. [1 ]
Rotimi, Damilare [1 ]
Evbuomwan, Ikponmwosa O. [2 ]
Maimako, Rotdelmwa Filibus [1 ]
Iyobhebhe, Matthew [1 ]
Ojo, Oluwafemi Adeleke [3 ]
Oluba, Olarewaju M. [1 ]
Adeyemi, Oluyomi S. [1 ]
机构
[1] Landmark Univ, Dept Biochem, Omu Aran, Nigeria
[2] Landmark Univ, Dept Microbiol, Omu Aran, Nigeria
[3] Bowen Univ, Dept Biochem, Phytomed Mol Toxicol & Comp Biochem Res Lab PMTCB, Iwo 232101, Nigeria
关键词
Cancer; Tumour blood vessels; Angiogenesis; Vascular endothelial growth factor (VEGF); Anti-angiogenic therapy; Vascular normalization therapy; MEDULLARY-THYROID CANCER; RENAL-CELL CARCINOMA; STEM-LIKE CELLS; TUMOR-GROWTH; ANTIANGIOGENIC THERAPY; DISEASE PROGRESSION; RECEPTOR SYSTEM; LUNG-CANCER; OPEN-LABEL; PHASE-II;
D O I
10.1016/j.ctarc.2022.100620
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Vascularization is fundamental to the growth and spread of tumor cells to distant sites. As a consequence, angiogenesis, the sprouting of new blood vessels from existing ones, is a characteristic trait of cancer. In 1971, Judah Folkman postulated that tumour growth is angiogenesis dependent and that by cutting off blood supply, a neoplastic lesion could be potentially starved into remission. Decades of research have been devoted to understanding the role that vascular endothelial growth factor (VEGF) plays in tumor angiogenesis, and it has been identified as a significant pro-angiogenic factor that is frequently overexpressed within a tumor mass. Today, anti-VEGF drugs such as Sunitinib, Sorafenib, Axitinib, Tanibirumab, and Ramucirumab have been approved for the treatment of advanced and metastatic cancers. However, anti-angiogenic therapy has turned out to be more complex than originally thought. The failure of this therapeutic option calls for a reevaluation of VEGF as the major target in anti-angiogenic cancer therapy. The call for reassessment is based on two rationales: first, tumour blood vessels are abnormal, disorganized, and leaky; this not only prevents optimal drug delivery but it also promotes hypoxia and metastasis; secondly, tumour growth or regrowth might be blood vessel dependent and not angiogenesis dependent as tumour cells can acquire blood vessels via non-angiogenic mechanisms. Therefore, a critical assessment of VEGF, VEGFRs, and their inhibitors could glean newer options such as repurposing antiVEGF drugs as vascular normalizing agents to enhance drug delivery of immune checkpoint inhibitors.
引用
收藏
页数:11
相关论文
共 163 条
[1]   Cabozantinib (C) versus placebo (P) in patients (pts) with advanced hepatocellular carcinoma (HCC) who have received prior sorafenib: Results from the randomized phase III CELESTIAL trial. [J].
Abou-Alfa, Ghassan K. ;
Meyer, Tim ;
Cheng, Ann-Lii ;
El-Khoueiry, Anthony B. ;
Rimassa, Lorenza ;
Ryoo, Baek-Yeol ;
Cicin, Irfan ;
Merle, Philippe ;
Park, Joong-Won ;
Blanc, Jean-Frederic ;
Bolondi, Luigi ;
Klumpen, Heinz Josef ;
Chan, Stephen Lam ;
Dadduzio, Vincenzo ;
Hessel, Colin ;
Borgman-Hagey, Anne E. ;
Schwab, Gisela ;
Kelley, Robin Kate .
JOURNAL OF CLINICAL ONCOLOGY, 2018, 36 (04)
[2]   Itraconazole Inhibits Angiogenesis and Tumor Growth in Non-Small Cell Lung Cancer [J].
Aftab, Blake T. ;
Dobromilskaya, Irina ;
Liu, Jun O. ;
Rudin, Charles M. .
CANCER RESEARCH, 2011, 71 (21) :6764-6772
[3]   CXCR2-Expressing Tumor Cells Drive Vascular Mimicry in Antiangiogenic Therapy-Resistant Glioblastoma [J].
Angara, Kartik ;
Borin, Thaiz F. ;
Rashid, Mohammad H. ;
Lebedyeva, Iryna ;
Ara, Roxan ;
Lin, Ping-Chang ;
Iskander, A. S. M. ;
Bollag, Roni J. ;
Achyut, Bhagelu R. ;
Arbab, Ali S. .
NEOPLASIA, 2018, 20 (10) :1070-1082
[4]   Vascular Mimicry: A Novel Neovascularization Mechanism Driving Anti-Angiogenic Therapy (AAT) Resistance in Glioblastoma [J].
Angara, Kartik ;
Borin, Thaiz F. ;
Arbab, Ali S. .
TRANSLATIONAL ONCOLOGY, 2017, 10 (04) :650-660
[5]   Activated Forms of VEGF-C and VEGF-D Provide Improved Vascular Function in Skeletal Muscle [J].
Anisimov, Andrey ;
Alitalo, Annamari ;
Korpisalo, Petra ;
Soronen, Jarkko ;
Kaijalainen, Seppo ;
Leppanen, Veli-Matti ;
Jeltsch, Michael ;
Yla-Herttuala, Seppo ;
Alitalo, Kari .
CIRCULATION RESEARCH, 2009, 104 (11) :1302-U156
[6]   Axitinib plus avelumab in the treatment of recurrent glioblastoma: a stratified, open-label, single-center phase 2 clinical trial (GliAvAx) [J].
Awada, Gil ;
Ben Salama, Laila ;
De Cremer, Jennifer ;
Schwarze, Julia Katharina ;
Fischbuch, Lydia ;
Seynaeve, Laura ;
Du Four, Stephanie ;
Vanbinst, Anne-Marie ;
Michotte, Alex ;
Everaert, Hendrik ;
Rogiers, Anne ;
Theuns, Peter ;
Duerinck, Johnny ;
Neyns, Bart .
JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2020, 8 (02)
[7]   Mechanisms of resistance to antiangiogenesis therapy [J].
Azam, Faisal ;
Mehta, Shaveta ;
Harris, Adrian L. .
EUROPEAN JOURNAL OF CANCER, 2010, 46 (08) :1323-1332
[8]  
Azimi-Nezhad M, 2014, REP BIOCHEM MOL BIOL, V2, P59
[9]   The Effect on Surgical Complications of Bevacizumab Added to Neoadjuvant Chemotherapy for Breast Cancer: NRG Oncology/NSABP Protocol B-40 [J].
Bear, Harry D. ;
Tang, Gong ;
Rastogi, Priya ;
Geyer, Charles E., Jr. ;
Zoon, Christine K. ;
Kidwell, Kelley M. ;
Robidoux, Andre ;
Baez-Diaz, Luis ;
Brufsky, Adam M. ;
Mehta, Rita S. ;
Fehrenbacher, Louis ;
Young, James A. ;
Senecal, Francis M. ;
Gaur, Rakesh ;
Margolese, Richard G. ;
Adams, Paul T. ;
Gross, Howard M. ;
Costantino, Joseph P. ;
Paik, Soonmyung ;
Swain, Sandra M. ;
Mamounas, Eleftherios P. ;
Wolmark, Norman .
ANNALS OF SURGICAL ONCOLOGY, 2017, 24 (07) :1853-1860
[10]   Modes of resistance to anti-angiogenic therapy [J].
Bergers, Gabriele ;
Hanahan, Douglas .
NATURE REVIEWS CANCER, 2008, 8 (08) :592-603