Deep Learning-based Texture Feature Extraction Technique for Face Annotation

被引:0
作者
Kasthuri, A. [1 ]
Suruliandi, A. [2 ]
Poongothai, E. [3 ]
Raja, S. P. [4 ]
机构
[1] Arulmigu Subramania Swamy Arts & Sci Coll, Dept Comp Sci, Thoothukudi 628907, Tamilnadu, India
[2] Manonmaniam Sundaranar Univ, Dept Comp Sci & Engn, Tirunelveli 627012, India
[3] SRM Inst Sci & Technol, Sch Comp, Dept Computat Intelligence, Chennai, India
[4] Vellore Inst Technol, Sch Comp Sci & Engn, Vellore, Tamil Nadu, India
关键词
CNN; deep learning; texture feature; face annotation; online networks; labeling;
D O I
10.1142/S0218001425320015
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Face annotation plays a crucial role in the field of computer vision. Its purpose is to accurately label the faces that appear in an image. The effectiveness of face annotation relies heavily on the representation of facial features, such as color, texture, and shape. Deep texture features, in particular, play a significant role in face annotation systems. It is worth noting that different individuals can possess similar texture features, which can impact the performance of annotation. Therefore, this study addresses the enduring complexity of face similarity by introducing an innovative approach called the Deep Learning-based Texture Feature (DLTF) through the utilization of the efficient deep learning model known as the Residual Network (ResNet). Despite the variations in poses, lighting, expressions, and occlusions that can greatly alter faces, ResNet's deep architecture and feature retention capabilities make it resilient to these changes, ensuring consistent and accurate annotations under diverse conditions. Experimental results obtained from the IMFDB, LFW, and Yahoo datasets demonstrate that the proposed DLTF is the most effective description of deep texture features, leading to improved face naming performance. Furthermore, the proposed DLTF enhances the efficiency of the face-naming task by effectively addressing real-life challenges.
引用
收藏
页数:27
相关论文
共 50 条
  • [21] Deep Learning-Based Classification and Feature Extraction for Predicting Pathogenesis of Foot Ulcers in Patients with Diabetes
    Preiya, V. Sathya
    Kumar, V. D. Ambeth
    DIAGNOSTICS, 2023, 13 (12)
  • [22] Deep Learning-Based Feature Extraction of Acoustic Emission Signals for Monitoring Wear of Grinding Wheels
    Gonzalez, D.
    Alvarez, J.
    Sanchez, J. A.
    Godino, L.
    Pombo, I
    SENSORS, 2022, 22 (18)
  • [23] IDDLE: A Novel Deep Learning-Based Approach for Intrusion Detection Problem Using Feature Extraction
    Goktepe, Yunus Emre
    Uzun, Yusuf
    SECURITY AND PRIVACY, 2025, 8 (01):
  • [24] A deep learning-based model using hybrid feature extraction approach for consumer sentiment analysis
    Kaur, Gagandeep
    Sharma, Amit
    JOURNAL OF BIG DATA, 2023, 10 (01)
  • [25] A deep learning-based model using hybrid feature extraction approach for consumer sentiment analysis
    Gagandeep Kaur
    Amit Sharma
    Journal of Big Data, 10
  • [26] A Deep Learning-Based Innovative Points Extraction Method
    Yu, Tao
    Wang, Rui
    Zhan, Hongfei
    Lin, Yingjun
    Yu, Junhe
    ADVANCES IN NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, ICNC-FSKD 2022, 2023, 153 : 130 - 138
  • [27] Deep Learning-Based Channel Prediction With Path Extraction
    Meliha, Mehdi
    Charge, Pascal
    Wang, Yide
    Bouzid, Salah Eddine
    Henry, Christophe
    Bourny, Christophe
    Tomaz, Henrique
    Chen, Yejian
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2025, 14 (03) : 891 - 895
  • [28] Flow feature extraction models based on deep learning
    Zhan Qing-Liang
    Ge Yao-Jun
    Bai Chun-Jin
    ACTA PHYSICA SINICA, 2022, 71 (07)
  • [29] Text feature extraction based on deep learning: a review
    Hong Liang
    Xiao Sun
    Yunlei Sun
    Yuan Gao
    EURASIP Journal on Wireless Communications and Networking, 2017
  • [30] Text feature extraction based on deep learning: a review
    Liang, Hong
    Sun, Xiao
    Sun, Yunlei
    Gao, Yuan
    EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2017,