Deep Learning-based Texture Feature Extraction Technique for Face Annotation

被引:0
作者
Kasthuri, A. [1 ]
Suruliandi, A. [2 ]
Poongothai, E. [3 ]
Raja, S. P. [4 ]
机构
[1] Arulmigu Subramania Swamy Arts & Sci Coll, Dept Comp Sci, Thoothukudi 628907, Tamilnadu, India
[2] Manonmaniam Sundaranar Univ, Dept Comp Sci & Engn, Tirunelveli 627012, India
[3] SRM Inst Sci & Technol, Sch Comp, Dept Computat Intelligence, Chennai, India
[4] Vellore Inst Technol, Sch Comp Sci & Engn, Vellore, Tamil Nadu, India
关键词
CNN; deep learning; texture feature; face annotation; online networks; labeling;
D O I
10.1142/S0218001425320015
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Face annotation plays a crucial role in the field of computer vision. Its purpose is to accurately label the faces that appear in an image. The effectiveness of face annotation relies heavily on the representation of facial features, such as color, texture, and shape. Deep texture features, in particular, play a significant role in face annotation systems. It is worth noting that different individuals can possess similar texture features, which can impact the performance of annotation. Therefore, this study addresses the enduring complexity of face similarity by introducing an innovative approach called the Deep Learning-based Texture Feature (DLTF) through the utilization of the efficient deep learning model known as the Residual Network (ResNet). Despite the variations in poses, lighting, expressions, and occlusions that can greatly alter faces, ResNet's deep architecture and feature retention capabilities make it resilient to these changes, ensuring consistent and accurate annotations under diverse conditions. Experimental results obtained from the IMFDB, LFW, and Yahoo datasets demonstrate that the proposed DLTF is the most effective description of deep texture features, leading to improved face naming performance. Furthermore, the proposed DLTF enhances the efficiency of the face-naming task by effectively addressing real-life challenges.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Feature extraction method of face image texture spectrum based on a deep learning algorithm
    Wang, Suhua
    Ma, Zhiqiang
    Sun, Xiaoxin
    INTERNATIONAL JOURNAL OF BIOMETRICS, 2021, 13 (2-3) : 195 - 210
  • [2] Deep Learning-Based Feature Extraction Technique for Single Document Summarization Using Hybrid Optimization Technique
    Rautaray, Jyotirmayee
    Panigrahi, Sangram
    Nayak, Ajit Kumar
    Sahu, Premananda
    Mishra, Kaushik
    IEEE ACCESS, 2025, 13 : 24515 - 24529
  • [3] Gabor-oriented local order feature-based deep learning for face annotation
    Kasthuri, A.
    Suruliandi, A.
    Raja, S. P.
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2019, 17 (05)
  • [4] Face Dynamic Modeling Based on Deep Learning and Feature Extraction
    Tong, Lijing
    Yang, Jinqiu
    Lai, Yuping
    Xiao, Zequn
    2019 3RD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE APPLICATIONS AND TECHNOLOGIES (AIAAT 2019), 2019, 646
  • [5] A Deep Learning-Based Feature Extraction Framework for System Security Assessment
    Sun, Mingyang
    Konstantelos, Ioannis
    Strbac, Goran
    IEEE TRANSACTIONS ON SMART GRID, 2019, 10 (05) : 5007 - 5020
  • [6] Melanoma Classification Approach with Deep Learning-Based Feature Extraction Models
    dos Santos, Alan R. F.
    Aires, Kelson R. T.
    das C Filho, I. Francisco
    de Sousa, Leonardo P.
    Veras, Rodrigo de M. S.
    Neto, Laurindo de S. B.
    Neto, Antonio L. de M.
    2021 XLVII LATIN AMERICAN COMPUTING CONFERENCE (CLEI 2021), 2021,
  • [7] A Novel Counterfeit Feature Extraction Technique for Exposing Face-Swap Images Based on Deep Learning and Error Level Analysis
    Zhang, Weiguo
    Zhao, Chenggang
    Li, Yuxing
    ENTROPY, 2020, 22 (02)
  • [8] Deep Feature Representation and Similarity Matrix based Noise Label Refinement Method for Efficient Face Annotation
    Suruliandi, A.
    Kasthuri, A.
    Raja, S. P.
    INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2021, 7 (02): : 66 - 77
  • [9] Deep Learning Feature Extraction Architectures for Real-Time Face Detection
    Ravi Teja B.
    Mythili D.
    Duvva L.
    Bethu S.
    Garapati Y.
    SN Computer Science, 4 (5)
  • [10] Binocular SLAM Based on Learning-based Feature Extraction
    Liu Chun
    Li Hongfei
    Zhou Qi
    Ma Zhenzhen
    Tang Sisi
    Wan Yaping
    PROCEEDINGS OF 2020 3RD INTERNATIONAL CONFERENCE ON ROBOT SYSTEMS AND APPLICATIONS, ICRSA2020, 2020, : 25 - 29