Pan-sharpening via Symmetric Multi-Scale Correction-Enhancement Transformers

被引:0
作者
Li, Yong [1 ,2 ]
Wang, Yi [1 ]
Shi, Shuai [3 ]
Wang, Jiaming [4 ]
Wang, Ruiyang [3 ]
Lu, Mengqian [2 ]
Zhang, Fan [1 ]
机构
[1] Peking Univ, Sch Earth & Space Sci, Inst Remote Sensing & Geog Informat Syst, Beijing 100871, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept Civil & Environm Engn, Hong Kong, Peoples R China
[3] Univ Hong Kong, Dept Real Estate & Construct, Hong Kong, Peoples R China
[4] Wuhan Inst Technol, Sch Comp Sci & Engn, Wuhan 430205, Peoples R China
基金
中国国家自然科学基金;
关键词
Pan-sharpening; Remote sensing image fusion; Vision transformers; Self-similarity; SUPERRESOLUTION;
D O I
10.1016/j.neunet.2025.107226
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Pan-sharpening is a widely employed technique for enhancing the quality and accuracy of remote sensing images, particularly in high-resolution image downstream tasks. However, existing deep-learning methods often neglect the self-similarity in remote sensing images. Ignoring it can result in poor fusion of texture and spectral details, leading to artifacts like ringing and reduced clarity in the fused image. To address these limitations, we propose the Symmetric Multi-Scale Correction-Enhancement Transformers (SMCET) model. SMCET incorporates a Self-Similarity Refinement Transformers (SSRT) module to capture self-similarity from frequency and spatial domain within a single scale, and an encoder-decoder framework to employ multi- scale transformations to simulate the self-similarity process across scales. Our experiments on multiple satellite datasets demonstrate that SMCET outperforms existing methods, offering superior texture and spectral details. The SMCET source code can be accessed at https://github.com/yonglleee/SMCET.
引用
收藏
页数:14
相关论文
共 49 条
[1]   Multispectral and panchromatic data fusion assessment without reference [J].
Alparone, Luciano ;
Alazzi, Bruno ;
Baronti, Stefano ;
Garzelli, Andrea ;
Nencini, Filippo ;
Selva, Massimo .
PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2008, 74 (02) :193-200
[2]  
[Anonymous], 2000, P 3 C FUS EARTH DAT, DOI DOI 10.1109/TAP.2018.2880032
[3]  
Bai YT, 2021, 35 ANN C NEURAL INFO, V34
[4]   HyperTransformer: A Textural and Spectral Feature Fusion Transformer for Pansharpening [J].
Bandara, Wele Gedara Chaminda ;
Patel, Vishal M. .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :1757-1767
[5]   Multi-sensor spectral synergies for crop stress detection and monitoring in the optical domain: A review [J].
Berger, Katja ;
Machwitz, Miriam ;
Kycko, Marlena ;
Kefauver, Shawn C. ;
Van Wittenberghe, Shari ;
Gerhards, Max ;
Verrelst, Jochem ;
Atzberger, Clement ;
van der Tol, Christiaan ;
Damm, Alexander ;
Rascher, Uwe ;
Herrmann, Ittai ;
Paz, Veronica Sobejano ;
Fahrner, Sven ;
Pieruschka, Roland ;
Prikaziuk, Egor ;
Buchaillot, Ma. Luisa ;
Halabuk, Andrej ;
Celesti, Marco ;
Koren, Gerbrand ;
Gormus, Esra Tunc ;
Rossini, Micol ;
Foerster, Michael ;
Siegmann, Bastian ;
Abdelbaki, Asmaa ;
Tagliabue, Giulia ;
Hank, Tobias ;
Darvishzadeh, Roshanak ;
Aasen, Helge ;
Garcia, Monica ;
Pocas, Isabel ;
Bandopadhyay, Subhajit ;
Sulis, Mauro ;
Tomelleri, Enrico ;
Rozenstein, Offer ;
Filchev, Lachezar ;
Stancile, Gheorghe ;
Schlerf, Martin .
REMOTE SENSING OF ENVIRONMENT, 2022, 280
[6]   Super-Resolution-Guided Progressive Pansharpening Based on a Deep Convolutional Neural Network [J].
Cai, Jiajun ;
Huang, Bo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (06) :5206-5220
[7]   End-to-End Object Detection with Transformers [J].
Carion, Nicolas ;
Massa, Francisco ;
Synnaeve, Gabriel ;
Usunier, Nicolas ;
Kirillov, Alexander ;
Zagoruyko, Sergey .
COMPUTER VISION - ECCV 2020, PT I, 2020, 12346 :213-229
[8]   Super-resolution through neighbor embedding [J].
Chang, H ;
Yeung, DY ;
Xiong, Y .
PROCEEDINGS OF THE 2004 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, 2004, :275-282
[9]   Detail Injection-Based Deep Convolutional Neural Networks for Pansharpening [J].
Deng, Liang-Jian ;
Vivone, Gemine ;
Jin, Cheng ;
Chanussot, Jocelyn .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (08) :6995-7010
[10]   Image Super-Resolution Using Deep Convolutional Networks [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (02) :295-307