Uniting high strength with large ductility in an additively manufactured fine-grained aluminum alloy

被引:0
作者
Cha, Wenhao [1 ,2 ]
Li, Gan [3 ,4 ,5 ,6 ]
He, Xi [6 ]
Li, Jie [7 ]
Li, Daoxiu [7 ]
Liu, Xiangfa [7 ]
Zhu, Qiang [6 ]
Liu, Sida [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Aerosp, Lab Multiscale Mech & Med Sci, SV LAB, Xian 710049, Peoples R China
[2] Rhein Westfal TH Aachen, Fac Georesources & Mat Engn, Aachen, Germany
[3] City Univ Hong Kong Matter Sci Res Inst Futian, Shenzhen, Peoples R China
[4] City Univ Hong Kong, Ctr Adv Struct Mat, Greater Bay Joint Div, Shenyang Natl Lab Mat Sci,Shenzhen Res Inst, Shenzhen, Peoples R China
[5] City Univ Hong Kong, Dept Mech Engn, Hong Kong, Peoples R China
[6] Southern Univ Sci & Technol, Dept Mech & Energy Engn, Shenzhen Key Lab Addit Mfg High Performance Mat, Shenzhen 518055, Peoples R China
[7] Shandong Univ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Minist Educ, Jinan 250061, Peoples R China
来源
MATERIALS RESEARCH LETTERS | 2025年
基金
中国国家自然科学基金;
关键词
Additive manufacturing; powder bed fusion - laser beam; AlSi10Mg alloy; Al-Ti-C-B master alloy; grain refinement; LASER MELTED ALSI10MG; MECHANICAL-PROPERTIES; HEAT-TREATMENT; FRACTURE-BEHAVIOR; MICROSTRUCTURE; AL-12SI;
D O I
10.1080/21663831.2024.2449175
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Actualizing the near net-shaping of lightweight aluminum (Al) alloys with both superior mechanical performance and complex geometry remains challenging. To address this issue, novel Al-Ti-C-B (TCB) master alloy powders were tailored as effective inoculators and introduced into the AlSi10Mg alloy powders to promote the heterogeneous nucleation of alpha-Al during powder bed fusion using laser beam (PBF-LB), leading to pronounced heterogeneous microstructure with bimodal fine-grains and improved distribution of eutectic Si. The modified alloy with a more refined and homogeneous microstructure exhibited an excellent strength-ductility combination due to microstructure modification, outperforming most previously reported commercial Al-Si alloys.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Significantly enhanced the ductility of the fine-grained Al-Zn-Mg-Cu alloy by strain-induced precipitation
    Lang, Yujing
    Zhou, Guxin
    Hou, Longgang
    Zhang, Jishan
    Zhuang, Linzhong
    MATERIALS & DESIGN, 2015, 88 : 625 - 631
  • [42] Ultrafine Grained High Strength Low Alloy Steel With High Strength And High Ductility
    Shi, Jie
    Cao, Wenquan
    Dong, Han
    PRICM 7, PTS 1-3, 2010, 654-656 : 238 - 241
  • [43] Overcoming the strength-ductility trade-off in an additively manufactured CoCrFeMnNi high entropy alloy via deep cryogenic treatment
    Li, H. G.
    Huang, Y. J.
    Zhao, W. J.
    Chen, T.
    Sun, J. F.
    Wei, D. Q.
    Du, Q.
    Zou, Y. C.
    Lu, Y. Z.
    Zhu, P.
    Lu, X.
    Ngan, A. H. W.
    ADDITIVE MANUFACTURING, 2022, 50
  • [44] High-ductility fine-grained Mg-1.92Zn-0.34Y alloy fabricated by semisolid and then hot extrusion
    Zeng, Qi
    Zhang, Yingbo
    Li, Kangning
    Zhuang, Ye
    Li, Jiaheng
    Yuan, Yong J.
    Yin, Dongdi
    JOURNAL OF MAGNESIUM AND ALLOYS, 2023, 11 (02) : 533 - 542
  • [45] Effect of Shot and Laser Peening on Fatigue Strength of Additively Manufactured Aluminum Alloy with Rough Surfaces
    Nakamura, Misato
    Takahashi, Koji
    Saito, Yuta
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2023, 32 (04) : 1589 - 1600
  • [46] Enhanced Ductility of a Fine-Grained Mg-Gd-Al-Zn Magnesium Alloy by Hot Extrusion
    Pourbahari, Bita
    Mirzadeh, Hamed
    Emamy, Massoud
    Roumina, Reza
    ADVANCED ENGINEERING MATERIALS, 2018, 20 (08)
  • [47] Exceptional strength-ductility synergy in additively manufactured (CoCrNi)90Al5Ti5 medium-entropy alloy by heat treatment
    Luo, Jinle
    Lu, Haojie
    Wen, Ming
    Ma, Shengguo
    Chen, Xizhang
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 31 : 3642 - 3651
  • [48] Hot-extruded AlCoCrFeNi high-entropy alloy with ultra-high strength and large ductility
    Dou, Zhenyu
    Yin, Jingou
    Niu, Jingzhe
    Wei, Ming
    Wang, Jian
    MATERIALS SCIENCE AND TECHNOLOGY, 2023, 39 (17) : 2842 - 2849
  • [49] Precipitation behavior and high strain rate superplasticity in a novel fine-grained aluminum based alloy
    Mikhaylovskaya, A. V.
    Kishchik, A. A.
    Kotov, A. D.
    Rofman, O. V.
    Tabachkova, N. Yu.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2019, 760 : 37 - 46
  • [50] Network-shaped fine-grained microstructure and high ductility of magnesium alloy fabricated by cyclic extrusion compression
    Chen, Y. J.
    Wang, Q. D.
    Roven, H. J.
    Liu, M. P.
    Karlsen, M.
    Yu, Y. D.
    Hjelen, J.
    SCRIPTA MATERIALIA, 2008, 58 (04) : 311 - 314