Comprehensive Analysis of the 5xFAD Mouse Model of Alzheimer's Disease Using dMRI, Immunohistochemistry, and Neuronal and Glial Functional Metabolic Mapping

被引:0
|
作者
Westi, Emil W. [1 ]
Molhemi, Saba [2 ]
Hansen, Caroline Termohlen [1 ]
Skoven, Christian Stald [2 ]
Knopper, Rasmus West [2 ,3 ]
Ahmad, Dashne Amein [1 ]
Rindshoj, Maja B. [1 ]
Ameen, Aishat O. [1 ]
Hansen, Brian [2 ]
Kohlmeier, Kristi A. [1 ]
Aldana, Blanca I. [1 ]
机构
[1] Univ Copenhagen, Fac Hlth & Med Sci, Dept Drug Design & Pharmacol, DK-2100 Copenhagen, Denmark
[2] Aarhus Univ, Ctr Functionally Integrat Neurosci, Dept Clin Med, DK-8000 Aarhus, Denmark
[3] Univ Chinese Acad Sci, Sino Danish Ctr Educ & Res, Beijing 100040, Peoples R China
关键词
Alzheimer's disease; 5xFAD mouse; amyloid-beta; gliosis; white mater degeneration; astrocytes; microglia; energy metabolism; diffusion MRI; NEUROTRANSMITTER HOMEOSTASIS; DIFFUSION; BETA; MICE;
D O I
10.3390/biom14101294
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Alzheimer's disease (AD) is characterized by complex interactions between neuropathological markers, metabolic dysregulation, and structural brain changes. In this study, we utilized a multimodal approach, combining immunohistochemistry, functional metabolic mapping, and microstructure sensitive diffusion MRI (dMRI) to progressively investigate these interactions in the 5xFAD mouse model of AD. Our analysis revealed age-dependent and region-specific accumulation of key AD markers, including amyloid-beta (A beta), GFAP, and IBA1, with significant differences observed between the hippocampal formation and upper and lower regions of the cortex by 6 months of age. Functional metabolic mapping validated localized disruptions in energy metabolism, with glucose hypometabolism in the hippocampus and impaired astrocytic metabolism in the cortex. Notably, increased cortical glutaminolysis suggested a shift in microglial metabolism, reflecting an adaptive response to neuroinflammatory processes. While dMRI showed no significant microstructural differences between 5xFAD and wild-type controls, the study highlights the importance of metabolic alterations as critical events in AD pathology. These findings emphasize the need for targeted therapeutic strategies addressing specific metabolic disturbances and underscore the potential of integrating advanced imaging with metabolic and molecular analyses to advance our understanding of AD progression.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Retinal Functional and Structural Changes in the 5xFAD Mouse Model of Alzheimer's Disease
    Lim, Jeremiah K. H.
    Li, Qiao-Xin
    He, Zheng
    Vingrys, Algis J.
    Chinnery, Holly R.
    Mullen, Jamie
    Bui, Bang V.
    Nguyen, Christine T. O.
    FRONTIERS IN NEUROSCIENCE, 2020, 14
  • [2] Mesoscopic Mapping of Visual Pathway in a Female 5XFAD Mouse Model of Alzheimer's Disease
    Nam, Yunkwon
    Kim, Sujin
    Kim, Jieun
    Hoe, Hyang-Sook
    Moon, Minho
    CELLS, 2022, 11 (23)
  • [3] Amyloid β Protein Aggravates Neuronal Senescence and Cognitive Deficits in 5XFAD Mouse Model of Alzheimer's Disease
    Wei, Zhen
    Chen, Xiao-Chun
    Song, Yue
    Pan, Xiao-Dong
    Dai, Xiao-Man
    Zhang, Jing
    Cui, Xiao-Li
    Wu, Xi-Lin
    Zhu, Yuan-Gui
    CHINESE MEDICAL JOURNAL, 2016, 129 (15) : 1835 - 1844
  • [4] Behaviour Hallmarks in Alzheimer's Disease 5xFAD Mouse Model
    Padua, Mafalda Soares
    Guil-Guerrero, Jose L.
    Lopes, Paula Alexandra
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (12)
  • [5] Functional and structural connectome properties in the 5XFAD transgenic mouse model of Alzheimer's disease
    Kesler, Shelli R.
    Acton, Paul
    Rao, Vikram
    Ray, William J.
    NETWORK NEUROSCIENCE, 2018, 2 (02): : 241 - 258
  • [6] Vulnerability of Spatial Pattern Separation in 5xFAD Alzheimer's Disease Mouse Model
    Gephine, Lucas
    Roux, Candice M.
    Freret, Thomas
    Boulouard, Michel
    Leger, Marianne
    JOURNAL OF ALZHEIMERS DISEASE, 2024, 97 (04) : 1889 - 1900
  • [7] Systematic phenotyping and characterization of the 5xFAD mouse model of Alzheimer's disease
    Forner, Stefania
    Kawauchi, Shimako
    Balderrama-Gutierrez, Gabriela
    Kramar, Eniko A.
    Matheos, Dina P.
    Phan, Jimmy
    Javonillo, Dominic, I
    Tran, Kristine M.
    Hingco, Edna
    da Cunha, Celia
    Rezaie, Narges
    Alcantara, Joshua A.
    Baglietto-Vargas, David
    Jansen, Camden
    Neumann, Jonathan
    Wood, Marcelo A.
    MacGregor, Grant R.
    Mortazavi, Ali
    Tenner, Andrea J.
    LaFerla, Frank M.
    Green, Kim N.
    SCIENTIFIC DATA, 2021, 8 (01)
  • [8] Glial Gap Junction Pathology in the Spinal Cord of the 5xFAD Mouse Model of Early-Onset Alzheimer's Disease
    Pechlivanidou, Maria
    Kousiappa, Ioanna
    Angeli, Stella
    Sargiannidou, Irene
    Koupparis, Andreas M.
    Papacostas, Savvas S.
    Kleopa, Kleopas A.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (24)
  • [9] Altered Brain Adiponectin Receptor Expression in the 5XFAD Mouse Model of Alzheimer's Disease
    Pratap, Anishchal A.
    Holsinger, R. M. Damian
    PHARMACEUTICALS, 2020, 13 (07) : 1 - 13
  • [10] Early Mitochondrial Defects in the 5xFAD Mouse Model of Alzheimer's Disease
    Sharma, Neelam
    Banerjee, Rupkatha
    Davis, Ronald L.
    JOURNAL OF ALZHEIMERS DISEASE, 2023, 90 (04) : 1323 - 1338