High-Impedance Fault Detection in Distribution Networks Based on Support Vector Machine and Wavelet Transform Approach (Case Study: Markazi Province of Iran)

被引:0
|
作者
Attar, Mohammad Sadegh [1 ]
Miveh, Mohammad Reza [1 ]
机构
[1] Tafresh Univ, Dept Elect Engn, Tafresh, Iran
关键词
discrete wavelet transform; distribution networks; high impedance fault; machine learning; support vector machine; INTELLIGENCE;
D O I
10.1002/ese3.2056
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
High impedance faults (HIFs) can lead to crucial damage to the utility grid, such as the risk of fire in material assets, electricity supply interruptions, and long service restoration times. Due to their low current magnitude, conventional protective equipment, such as overcurrent relays, cannot detect these faults. Alternatively, the waveform and variation range of current in HIFs are similar to other phenomena, such as linear and nonlinear load changes and capacitor banks. This paper employs a support vector machine (SVM) classification algorithm that demonstrates reliable accuracy and discrete wavelet transform (DWT) in HIF detection. First, the data set containing measured current signals of HIFs is collected to implement this approach. Then, DWT decomposes it to extract the features of each sample in the data set. The extracted features from this part are used as input to the SVM classification algorithm. The proposed idea is initially implemented on the IEEE 34-bus distribution test network. The proposed method achieves high capability and accuracy in detecting high-impedance faults. The proposed method is also applied to a real power distribution network in Markazi Province of Iran, yielding satisfactory results. EMTP-RV simulation software is used to simulate and evaluate the proposed method for power network modeling. Moreover, MATLAB software is used for feature extraction, and Python programming language in Google Colab and Spyder environment is applied to implement the SVM algorithm. The simulation results confirm the high accuracy of the suggested method. The main criteria obtained by the proposed method include accuracy, sensitivity, specificity, precision, F-score, and Dice, which are 99.581%, 98.684%, 100%, 100%, 99.338%, and 99.338%, respectively, for the test network, and 97.94%, 93.45%, 100%, 100%, 96.614%, and 96.618%, respectively, for the real power distribution network.
引用
收藏
页码:1171 / 1183
页数:13
相关论文
共 50 条
  • [21] Wavelet Packet Transform and Support Vector Machine Based Discrimination of Roller Bearings Fault
    Xu, Yun-Jie
    Xiu, Shu-Dong
    ADVANCED RESEARCH ON COMPUTER SCIENCE AND INFORMATION ENGINEERING, PT I, 2011, 152 : 422 - 428
  • [22] Detection Method of High Impedance Fault in Distribution Network Based on Multi-resolution Wavelet Transform
    Liu K.
    Ye X.
    Li Z.
    Tan Y.
    Li B.
    Gaodianya Jishu/High Voltage Engineering, 2023, 49 (10): : 4247 - 4256
  • [23] High-impedance fault detection and localization in distribution feeders with microprocessor based devices
    Uriarte, FM
    Centeno, V
    37TH NORTH AMERICAN POWER SYMPOSIUM, PROCEEDINGS, 2005, : 219 - 224
  • [24] Fault Diagnosis of Rolling Bearing Based on Wavelet Packet Transform and Support Vector Machine
    Yang Zhengyou
    Peng Tao
    Li Jianbao
    Yang Huibin
    Jiang Haiyan
    2009 INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION, VOL I, 2009, : 650 - 653
  • [25] High impedance fault detection based on wavelet transform and statistical pattern recognition
    Sedighi, AR
    Haghifam, MR
    Malik, OP
    Ghassemian, MH
    IEEE TRANSACTIONS ON POWER DELIVERY, 2005, 20 (04) : 2414 - 2421
  • [26] High-impedance Fault Detection Method Based on Feature Extraction and Synchronous Data Divergence Discrimination in Distribution Networks
    Liu, Yang
    Zhao, Yanlei
    Wang, Lei
    Fang, Chen
    Xie, Bangpeng
    Cui, Laixi
    JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, 2023, 11 (04) : 1235 - 1246
  • [27] High-impedance fault detection in medium-voltage distribution network using computational intelligence-based classifiers
    Veerapandiyan Veerasamy
    Noor Izzri Abdul Wahab
    Rajeswari Ramachandran
    Mariammal Thirumeni
    Chitra Subramanian
    Mohammad Lutfi Othman
    Hashim Hizam
    Neural Computing and Applications, 2019, 31 : 9127 - 9143
  • [28] High-impedance fault detection in medium-voltage distribution network using computational intelligence-based classifiers
    Veerasamy, Veerapandiyan
    Wahab, Noor Izzri Abdul
    Ramachandran, Rajeswari
    Thirumeni, Mariammal
    Subramanian, Chitra
    Othman, Mohammad Lutfi
    Hizam, Hashim
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (12) : 9127 - 9143
  • [29] High-Impedance Fault Detection Method Based on Stochastic Resonance For a Distribution Network With Strong Background Noise
    Wang, Xiaowei
    Wei, Xiangxiang
    Gao, Jie
    Song, Guobing
    Kheshti, Mostafa
    Guo, Liang
    IEEE TRANSACTIONS ON POWER DELIVERY, 2022, 37 (02) : 1004 - 1016
  • [30] Wavelet Transform and PSO Support Vector Machine Based Approach for Time Series Forecasting
    Wang Xiao-Lu
    Liu Jian
    Lu Jian-Jun
    2009 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, VOL I, PROCEEDINGS, 2009, : 46 - +