APPROXIMATING RATIONAL POINTS ON SURFACES

被引:0
|
作者
Lehmann, Brian [1 ]
Mckinnon, David [2 ]
Satriano, Matthew [2 ]
机构
[1] Boston Coll, Dept Math, Fifth Floor,Maloney Hall, Chestnut Hill, MA 02467 USA
[2] Univ Waterloo, Dept Pure Math, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Coba conjecture; Diophantine geometry; rational points; Vojta's conjecture;
D O I
10.1090/proc/17131
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be a smooth projective algebraic variety over a number field k and P is an element of X(k). McKinnon [J. Algebraic Geom. 16 (2007), pp. 257-303] conjectured that, in a precise sense, if rational points on X are dense enough, then the best rational approximations to P must lie on a curve. We present a strategy for deducing a slightly weaker conjecture from Vojta's conjecture, and execute the strategy for the full conjecture for split surfaces.
引用
收藏
页码:1903 / 1915
页数:13
相关论文
共 50 条
  • [31] Counting rational points on cubic curves
    Roger Heath-Brown
    Damiano Testa
    Science China Mathematics, 2010, 53 : 2259 - 2268
  • [32] Rational points on certain homogeneous varieties
    Pengyu Yang
    European Journal of Mathematics, 2023, 9
  • [33] Rational points on generic marked hypersurfaces
    Ma, Qixiao
    MATHEMATISCHE ZEITSCHRIFT, 2024, 306 (03)
  • [34] Free rational points on smooth hypersurfaces
    Browning, Tim
    Sawin, Will
    COMMENTARII MATHEMATICI HELVETICI, 2020, 95 (04) : 635 - 659
  • [35] Rational points on a class of cubic hypersurfaces
    Jiang, Yujiao
    Wen, Tingting
    Zhao, Wenjia
    FORUM MATHEMATICUM, 2024,
  • [36] Uniformly counting rational points on conics
    Sofos, Efthymios
    ACTA ARITHMETICA, 2014, 166 (01) : 1 - 13
  • [37] Rational points and analytic number theory
    Heath-Brown, R
    ARITHMETIC OF HIGHER-DIMENSIONAL ALGEBRAIC VARIETIES, 2004, 226 : 37 - 42
  • [38] ZEROES AND RATIONAL POINTS OF ANALYTIC FUNCTIONS
    Comte, Georges
    Yomdin, Yosef
    ANNALES DE L INSTITUT FOURIER, 2018, 68 (06) : 2445 - 2476
  • [39] CERTAIN SEXTICS WITH MANY RATIONAL POINTS
    Kawakita, Motoko Qiu
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2017, 11 (02) : 289 - 292
  • [40] Rational points on certain homogeneous varieties
    Yang, Pengyu
    EUROPEAN JOURNAL OF MATHEMATICS, 2023, 9 (01)