APPROXIMATING RATIONAL POINTS ON SURFACES

被引:0
|
作者
Lehmann, Brian [1 ]
Mckinnon, David [2 ]
Satriano, Matthew [2 ]
机构
[1] Boston Coll, Dept Math, Fifth Floor,Maloney Hall, Chestnut Hill, MA 02467 USA
[2] Univ Waterloo, Dept Pure Math, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Coba conjecture; Diophantine geometry; rational points; Vojta's conjecture;
D O I
10.1090/proc/17131
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be a smooth projective algebraic variety over a number field k and P is an element of X(k). McKinnon [J. Algebraic Geom. 16 (2007), pp. 257-303] conjectured that, in a precise sense, if rational points on X are dense enough, then the best rational approximations to P must lie on a curve. We present a strategy for deducing a slightly weaker conjecture from Vojta's conjecture, and execute the strategy for the full conjecture for split surfaces.
引用
收藏
页码:1903 / 1915
页数:13
相关论文
共 50 条
  • [21] Counting rational points of a Grassmannian
    Kim, Seungki
    MONATSHEFTE FUR MATHEMATIK, 2023, 201 (03): : 825 - 864
  • [22] Remarks on endomorphisms and rational points
    Amerik, E.
    Bogomolov, F.
    Rovinsky, M.
    COMPOSITIO MATHEMATICA, 2011, 147 (06) : 1819 - 1842
  • [23] Counting rational points of a Grassmannian
    Seungki Kim
    Monatshefte für Mathematik, 2023, 201 : 825 - 864
  • [24] Rational points on the unit sphere
    Schmutz, Eric
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2008, 6 (03): : 482 - 487
  • [25] DISTRIBUTION OF RATIONAL POINTS: A SURVEY
    Takloo-Bighash, Ramin
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2009, 35 (01) : 1 - 30
  • [26] Rational points and derived equivalence
    Addington, Nicolas
    Antieau, Benjamin
    Honigs, Katrina
    Frei, Sarah
    COMPOSITIO MATHEMATICA, 2021, 157 (05) : 1036 - 1050
  • [27] The distribution of rational points on conics
    Heath-brown, D. R.
    ACTA ARITHMETICA, 2023, 209 (01) : 91 - 128
  • [28] Rational points of elliptic surfaces and the topology of cubic-line, cubic-conic-line arrangements
    Bannai, Shinzo
    Tokunaga, Hiro-O
    Yamamoto, Momoko
    HOKKAIDO MATHEMATICAL JOURNAL, 2020, 49 (01) : 87 - 108
  • [29] Number of rational points of elliptic curves
    Duris, Viliam
    Sumny, Timotej
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (01)
  • [30] Rational points and cohomology of discriminant varieties
    Lehrer, GI
    ADVANCES IN MATHEMATICS, 2004, 186 (01) : 229 - 250