APPROXIMATING RATIONAL POINTS ON SURFACES

被引:0
作者
Lehmann, Brian [1 ]
Mckinnon, David [2 ]
Satriano, Matthew [2 ]
机构
[1] Boston Coll, Dept Math, Fifth Floor,Maloney Hall, Chestnut Hill, MA 02467 USA
[2] Univ Waterloo, Dept Pure Math, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Coba conjecture; Diophantine geometry; rational points; Vojta's conjecture;
D O I
10.1090/proc/17131
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be a smooth projective algebraic variety over a number field k and P is an element of X(k). McKinnon [J. Algebraic Geom. 16 (2007), pp. 257-303] conjectured that, in a precise sense, if rational points on X are dense enough, then the best rational approximations to P must lie on a curve. We present a strategy for deducing a slightly weaker conjecture from Vojta's conjecture, and execute the strategy for the full conjecture for split surfaces.
引用
收藏
页码:1903 / 1915
页数:13
相关论文
共 21 条
[1]   THE CONE OF EFFECTIVE 3-DIMENSIONAL 1-CYCLES [J].
BENVENISTE, X .
MATHEMATISCHE ANNALEN, 1985, 272 (02) :257-265
[2]   EXISTENCE OF MINIMAL MODELS FOR VARIETIES OF LOG GENERAL TYPE [J].
Birkar, Caucher ;
Cascini, Paolo ;
Hacon, Christopher D. ;
McKernan, James .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 23 (02) :405-468
[3]  
Castaneda D., 2019, Rational approximations on smooth rational surfaces
[4]   Cone theorem via Deligne-Mumford stacks [J].
Chen, Jiun-Cheng ;
Tseng, Hsian-Hua .
MATHEMATISCHE ANNALEN, 2009, 345 (03) :525-545
[5]   THE APPROXIMATION TO ALGEBRAIC NUMBERS BY RATIONALS [J].
DYSON, FJ .
ACTA MATHEMATICA, 1947, 79 (04) :225-240
[6]  
HINDRY M, 2000, GRAD TEXT M, V201, P1
[7]   Rational approximations on toric varieties [J].
Huang, Zhizhong .
ALGEBRA & NUMBER THEORY, 2021, 15 (02) :461-512
[8]   Three-fold divisorial contractions to singularities of higher indices [J].
Kawakita, M .
DUKE MATHEMATICAL JOURNAL, 2005, 130 (01) :57-126
[9]   ON THE LENGTH OF AN EXTREMAL RATIONAL CURVE [J].
KAWAMATA, Y .
INVENTIONES MATHEMATICAE, 1991, 105 (03) :609-611
[10]  
Kollar J, 1998, Cambridge Tracts Math, V134, DOI 10.1017/CBO9780511662560