APPROXIMATING RATIONAL POINTS ON SURFACES

被引:0
|
作者
Lehmann, Brian [1 ]
Mckinnon, David [2 ]
Satriano, Matthew [2 ]
机构
[1] Boston Coll, Dept Math, Fifth Floor,Maloney Hall, Chestnut Hill, MA 02467 USA
[2] Univ Waterloo, Dept Pure Math, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Coba conjecture; Diophantine geometry; rational points; Vojta's conjecture;
D O I
10.1090/proc/17131
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be a smooth projective algebraic variety over a number field k and P is an element of X(k). McKinnon [J. Algebraic Geom. 16 (2007), pp. 257-303] conjectured that, in a precise sense, if rational points on X are dense enough, then the best rational approximations to P must lie on a curve. We present a strategy for deducing a slightly weaker conjecture from Vojta's conjecture, and execute the strategy for the full conjecture for split surfaces.
引用
收藏
页码:1903 / 1915
页数:13
相关论文
共 50 条
  • [1] Density of rational points on certain surfaces
    Swinnerton-Dyer, Peter
    ALGEBRA & NUMBER THEORY, 2013, 7 (04) : 835 - 851
  • [2] Counting rational points on Kummer surfaces
    Andreas Malmendier
    Yih Sung
    Research in Number Theory, 2019, 5
  • [3] Density of rational points on elliptic surfaces
    van Luijk, Ronald
    ACTA ARITHMETICA, 2012, 156 (02) : 189 - 199
  • [4] Quartic surfaces, their bitangents and rational points
    Corvaja, Pietro
    Zucconi, Francesco
    EPIJOURNAL DE GEOMETRIE ALGEBRIQUE, 2023, 7 : 1 - 10
  • [5] Counting rational points on Kummer surfaces
    Malmendier, Andreas
    Sung, Yih
    RESEARCH IN NUMBER THEORY, 2019, 5 (03)
  • [6] Counting rational points on cubic surfaces
    Heath-Brown, R
    ASTERISQUE, 1998, (251) : 13 - 30
  • [7] Density of rational points on diagonal quartic surfaces
    Logan, Adam
    McKinnon, David
    van Luijk, Ronald
    ALGEBRA & NUMBER THEORY, 2010, 4 (01) : 1 - 20
  • [8] INTEGRAL POINTS AND VOJTA'S CONJECTURE ON RATIONAL SURFACES
    Yasufuku, Yu
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (02) : 767 - 784
  • [9] Rational points on Del Pezzo surfaces of degree four
    Mitankin, Vladimir
    Salgado, Cecilia
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2022, 18 (09) : 2099 - 2127
  • [10] Quadratic congruences on average and rational points on cubic surfaces
    Baier, Stephan
    Derenthal, Ulrich
    ACTA ARITHMETICA, 2015, 171 (02) : 145 - 171