Progress in Research on Deep Learning-Based Crop Yield Prediction

被引:0
|
作者
Wang, Yuhan [1 ,2 ]
Zhang, Qian [2 ]
Yu, Feng [2 ]
Zhang, Na [1 ,3 ]
Zhang, Xining [2 ]
Li, Yuchen [1 ]
Wang, Ming [2 ]
Zhang, Jinmeng [2 ]
机构
[1] Beijing Agr Univ, Coll Intelligent Sci & Engn, Beijing 102206, Peoples R China
[2] Beijing Acad Agr & Forestry Sci, Inst Data Sci & Agr Econ, Beijing 102206, Peoples R China
[3] Beijing Rural Remote Informat Serv Engn Technol Re, Beijing 102206, Peoples R China
来源
AGRONOMY-BASEL | 2024年 / 14卷 / 10期
关键词
deep learning; prediction model; crop yield prediction; NEURAL-NETWORKS; AGRICULTURE; MODEL;
D O I
10.3390/agronomy14102264
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
In recent years, crop yield prediction has become a research hotspot in the field of agricultural science, playing a decisive role in the economic development of every country. Therefore, accurate and timely prediction of crop yields is of great significance for the national formulation of relevant economic policies and provides a reasonable basis for agricultural decision-making. The results obtained through prediction can selectively observe the impact of factors such as crop growth cycles, soil changes, and rainfall distribution on crop yields, which is crucial for predicting crop yields. Although traditional machine learning methods can obtain an estimated crop yield value and to some extent reflect the current growth status of crops, their prediction accuracy is relatively low, with significant deviations from actual yields, and they fail to achieve satisfactory results. To address these issues, after in-depth research on the development and current status of crop yield prediction, and a comparative analysis of the advantages and problems of domestic and foreign yield prediction algorithms, this paper summarizes the methods of crop yield prediction based on deep learning. This includes analyzing and summarizing existing major prediction models, analyzing prediction methods for different crops, and finally providing relevant views and suggestions on the future development direction of applying deep learning to crop yield prediction research.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] Research progress and application of retention time prediction method based on deep learning
    Du Zhuokun
    Shao Wei
    Qin Weijie
    CHINESE JOURNAL OF CHROMATOGRAPHY, 2021, 39 (03) : 211 - 218
  • [42] Deep Learning Based Wheat Crop Yield Prediction Model in Punjab Region of North India
    Bali, Nishu
    Singla, Anshu
    APPLIED ARTIFICIAL INTELLIGENCE, 2021, 35 (15) : 1304 - 1328
  • [43] Research progress in water quality prediction based on deep learning technology: a review
    Li W.
    Zhao Y.
    Zhu Y.
    Dong Z.
    Wang F.
    Huang F.
    Environmental Science and Pollution Research, 2024, 31 (18) : 26415 - 26431
  • [44] Recent progress on deep learning-based disruption prediction algorithm in HL-2A tokamak
    杨宗谕
    刘宇航
    朱晓博
    陈正威
    夏凡
    钟武律
    高喆
    张轶泼
    刘仪
    Chinese Physics B, 2023, (07) : 14 - 24
  • [45] Recent progress on deep learning-based disruption prediction algorithm in HL-2A tokamak
    Yang, Zongyu
    Liu, Yuhang
    Zhu, Xiaobo
    Chen, Zhengwei
    Xia, Fan
    Zhong, Wulyu
    Gao, Zhe
    Zhang, Yipo
    Liu, Yi
    CHINESE PHYSICS B, 2023, 32 (07)
  • [46] Review of deep learning-based weed identification in crop fields
    Hu, Wenze
    Wane, Samuel Oliver
    Zhu, Junke
    Li, Dongsheng
    Zhang, Qing
    Bie, Xiaoting
    Lan, Yubin
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND BIOLOGICAL ENGINEERING, 2023, 16 (04) : 1 - 10
  • [47] Deep learning-based approach for identification of diseases of maize crop
    Haque, Md Ashraful
    Marwaha, Sudeep
    Deb, Chandan Kumar
    Nigam, Sapna
    Arora, Alka
    Hooda, Karambir Singh
    Soujanya, P. Lakshmi
    Aggarwal, Sumit Kumar
    Lall, Brejesh
    Kumar, Mukesh
    Islam, Shahnawazul
    Panwar, Mohit
    Kumar, Prabhat
    Agrawal, R. C.
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [48] Deep learning-based approach for identification of diseases of maize crop
    Md. Ashraful Haque
    Sudeep Marwaha
    Chandan Kumar Deb
    Sapna Nigam
    Alka Arora
    Karambir Singh Hooda
    P. Lakshmi Soujanya
    Sumit Kumar Aggarwal
    Brejesh Lall
    Mukesh Kumar
    Shahnawazul Islam
    Mohit Panwar
    Prabhat Kumar
    R. C. Agrawal
    Scientific Reports, 12
  • [49] Prediction of crop yield in India using machine learning and hybrid deep learning models
    Saravanan, Krithikha Sanju
    Bhagavathiappan, Velammal
    ACTA GEOPHYSICA, 2024, 72 (06) : 4613 - 4632
  • [50] Machine Learning and Deep Learning-Based Students’ Grade Prediction
    Korchi A.
    Messaoudi F.
    Abatal A.
    Manzali Y.
    Operations Research Forum, 4 (4)