A CHARACTERIZATION OF S1-PROJECTIVE MODULES

被引:0
|
作者
Kim, Hwankoo [1 ]
Mahdou, Najib [2 ]
Oubouhou, El houssaine [2 ]
机构
[1] Hoseo Univ, Div Comp Engn, Cheonan, South Korea
[2] Univ SM Ben Abdellah Fez, Fac Sci & Technol Fez, Dept Math, Box 2202, Fes, Morocco
来源
KOREAN JOURNAL OF MATHEMATICS | 2025年 / 33卷 / 01期
基金
新加坡国家研究基金会;
关键词
S-torsion exact sequence; S-torsion commutative diagram; S-1-projective module; S-2-projective module; FLAT MODULES; RINGS;
D O I
10.11568/kjm.2025.33.1.21
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, Zhao, Pu, Chen, and Xiao introduced and investigated novel concepts regarding S-torsion exact sequences, S-torsion commutative diagrams, and Si-projective modules (for i = 1, 2) in the context of a commutative ring R and a multiplicative subset S of R. Their research included various results, such as proving that an R-module is S1-projective if it is S-torsion isomorphic to a projective module. In this paper, we further examine properties of S-torsion exact sequences and S-torsion commutative diagrams, and we establish the equivalence between an R-module being S1-projective and its S-torsion isomorphism to a projective module.
引用
收藏
页码:21 / 35
页数:15
相关论文
共 50 条
  • [1] A Characterization of Nonnil-Projective Modules
    Kim, Hwankoo
    Mahdou, Najib
    Oubouhou, El houssaine
    KYUNGPOOK MATHEMATICAL JOURNAL, 2024, 64 (01): : 1 - 14
  • [2] τ-PROJECTIVE AND STRONGLY τ-PROJECTIVE MODULES
    Amin, Ismail
    Ibrahim, Yasser
    Yousif, Mohamed
    CONTEMPORARY RING THEORY 2011, 2012, : 209 - 235
  • [3] On S-torsion exact sequences and Si-projective modules (i=1,2)
    Zhao, Wei
    Pu, Yongyan
    Chen, Mingzhao
    Xiao, Xuelian
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023, 22 (04)
  • [4] S-FP-Projective Modules and Dimensions
    Assaad, Refat Abdelmawla Khaled
    Zhang, Xlaolei
    Kim, Hwankoo
    JOURNAL OF MATHEMATICS, 2023, 2023
  • [5] Rings related to S-projective modules
    Zhu, Zhanmin
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2019, 62 (04): : 439 - 449
  • [6] n-Copure projective modules
    Gao Zenghui
    MATHEMATICAL NOTES, 2015, 97 (1-2) : 50 - 56
  • [7] The Ext-strongly Gorenstein projective modules
    Ren, Jie
    TURKISH JOURNAL OF MATHEMATICS, 2015, 39 (01) : 54 - 62
  • [8] PURE PROJECTIVE TILTING MODULES
    Bazzoni, Silvana
    Herzog, Ivo
    Prihoda, Pavel
    Saroch, Jan
    Trlifaj, Jan
    DOCUMENTA MATHEMATICA, 2020, 25 : 401 - 424
  • [9] Finite direct projective modules
    Gupta, Sonal
    Gupta, Ashok Ji
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (12)
  • [10] ON MODULES OF FINITE PROJECTIVE DIMENSION
    Dutta, S. P.
    NAGOYA MATHEMATICAL JOURNAL, 2015, 219 : 87 - 111