Joint inference of adaptive and demographic history from temporal population genomic data

被引:2
作者
Pavinato, Vitor A. C. [1 ,2 ,3 ]
De Mita, Stephane [4 ,5 ]
Marin, Jean-Michel [2 ]
de Navascues, Miguel [1 ,6 ]
机构
[1] Univ Montpellier, Inst Agro, CBGP, INRAE,CIRAD,IRD, Montpellier, France
[2] Univ Montpellier, CNRS, IMAG, UMR 5149, Montpellier, France
[3] Ohio State Univ, Entomol Dept, CFAES, Wooster, OH USA
[4] INRAE, UMR Interact Arbres Microorganismes, Paris, France
[5] Univ Montpellier, PHIM Plant Hlth Inst, Inst Agro, INRAE, Montpellier, France
[6] Uppsala Univ, Dept Organismal Biol, Human Evolut, Uppsala, Sweden
来源
PEER COMMUNITY JOURNAL | 2022年 / 2卷
关键词
LINKAGE DISEQUILIBRIUM; BACKGROUND SELECTION; POSITIVE SELECTION; SOFT SWEEPS; EVOLUTION; GENETICS; ADAPTATION; MUTATION; SIZE; INTERFERENCE;
D O I
10.24072/pcjournal.203
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Disentangling the effects of selection and drift is a long-standing problem in population genetics. Simulations show that pervasive selection may bias the inference of demography. Ideally, models for the inference of demography and selection should account for the interaction between these two forces. With simulation-based likelihood-free methods such as Approximate Bayesian Computation (ABC), demography and selection parameters can be jointly estimated. We propose to use the ABC-Random Forests framework to jointly infer demographic and selection parameters from temporal population genomic data (e.g. experimental evolution, monitored populations, ancient DNA). Our framework allowed the separation of demography (census size, N ) from the genetic drift (effective population size, N e ) and the estimation of genome-wide parameters of selection. Selection parameters informed us about the adaptive potential of a population (the scaled mutation rate of beneficial mutations, theta b), the realized adaptation (the number of mutations under strong selection), and population fitness (genetic load). We applied this approach to a dataset of feral populations of honey bees ( Apis mellifera) collected in California, and we estimated parameters consistent with the biology and the recent history of this species.
引用
收藏
页数:20
相关论文
共 66 条
[1]   Thinking too positive? Revisiting current methods of population genetic selection inference [J].
Bank, Claudia ;
Ewing, Gregory B. ;
Ferrer-Admettla, Anna ;
Foll, Matthieu ;
Jensen, Jeffrey D. .
TRENDS IN GENETICS, 2014, 30 (12) :540-546
[2]   Likelihood-Free Inference of Population Structure and Local Adaptation in a Bayesian Hierarchical Model [J].
Bazin, Eric ;
Dawson, Kevin J. ;
Beaumont, Mark A. .
GENETICS, 2010, 185 (02) :587-602
[3]   Using Genomic Data to Infer Historic Population Dynamics of Nonmodel Organisms [J].
Beichman, Annabel C. ;
Huerta-Sanchez, Emilia ;
Lohmueller, Kirk E. .
ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS, VOL 49, 2018, 49 :433-456
[4]   Assessing the evolutionary impact of amino acid mutations in the human genome [J].
Boyko, Adam R. ;
Williamson, Scott H. ;
Indap, Amit R. ;
Degenhardt, Jeremiah D. ;
Hernandez, Ryan D. ;
Lohmueller, Kirk E. ;
Adams, Mark D. ;
Schmidt, Steffen ;
Sninsky, John J. ;
Sunyaev, Shamil R. ;
White, Thomas J. ;
Nielsen, Rasmus ;
Clark, Andrew G. ;
Bustamante, Carlos D. .
PLOS GENETICS, 2008, 4 (05)
[5]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[6]   The Linked Selection Signature of Rapid Adaptation in Temporal Genomic Data [J].
Buffalo, Vince ;
Coop, Graham .
GENETICS, 2019, 213 (03) :1007-1045
[7]   Estimating the genome-wide contribution of selection to temporal allele frequency change [J].
Buffalo, Vince ;
Coop, Graham .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (34) :20672-20680
[8]   Molecular Population Genetics [J].
Casillas, Sonia ;
Barbadilla, Antonio .
GENETICS, 2017, 205 (03) :1003-1035
[9]  
Center O.S., 1987, Ohio supercomputer center
[10]   Genome Sequencing of Museum Specimens Reveals Rapid Changes in the Genetic Composition of Honey Bees in California [J].
Cridland, Julie M. ;
Ramirez, Santiago R. ;
Dean, Cheryl A. ;
Sciligo, Amber ;
Tsutsui, Neil D. .
GENOME BIOLOGY AND EVOLUTION, 2018, 10 (02) :458-472