A Lightweight CNN-Transformer Implemented via Structural Re-Parameterization and Hybrid Attention for Remote Sensing Image Super-Resolution

被引:0
|
作者
Wang, Jie [1 ]
Li, Hongwei [1 ]
Li, Yifan [2 ]
Qin, Zilong [3 ]
机构
[1] Zhengzhou Univ, Sch Geosci & Technol, Zhengzhou 450052, Peoples R China
[2] Univ Cologne, Inst Geophys & Meteorol, D-50923 Cologne, Germany
[3] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
super-resolution; remote sensing; CNN-Transformer; lightweight; hybrid attention;
D O I
10.3390/ijgi14010008
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Remote sensing imagery contains rich information about geographical targets, and performing super-resolution (SR) reconstruction on such images requires greater feature representation capabilities. Convolutional neural network (CNN)-based methods excel at extracting intricate local features but fall short in terms of capturing global representations. While transformer methods are capable of learning long-distance dependencies, they often overlook local feature details, which can diminish the discriminability between the background and the foreground. Moreover, the distinctive architectures of transformers, their extensive parameter counts, and their reliance on large-scale training datasets impose constraints on transformer applications in remote sensing image feature extraction tasks. To address these challenges, this study introduces a novel hybrid CNN-Transformer network model named RepCHAT for remote sensing single image reconstruction, which incorporates a structural re-parameterization technique and a hybrid attention mechanism. This method leverages the strengths of transformers in terms of learning long-distance dependencies (global features) and CNNs with respect to extracting local features. The proposed approach achieves SR reconstruction for remote sensing images with fewer parameters and less computational overhead than those of traditional transformers and high-performance CNN models. We develop a multiscale feature extraction module that integrates both spatial- and frequency-domain features and employs structural re-parameterization theory to increase the inference efficiency of the model. Furthermore, we incorporate depthwise-separable convolution into the transformer block to bolster the local feature learning capabilities of the transformer. The method we propose achieves the optimal performance for remote sensing single-image super-resolution reconstruction and outperforms the competing methods by 0.28-1.05 dB (x4 scale) in terms of signal-to-noise ratio (PSNR). Experimental results indicate that the RepCHAT model proposed in this study maintains a high performance with significantly reduced complexity, making it suitable for deployment on edge devices.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] MSWAGAN: Multispectral Remote Sensing Image Super-Resolution Based on Multiscale Window Attention Transformer
    Wang, Chunyang
    Zhang, Xian
    Yang, Wei
    Wang, Gaige
    Li, Xingwang
    Wang, Jianlong
    Lu, Bibo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 15
  • [32] Multi-Attention Multi-Image Super-Resolution Transformer (MAST) for Remote Sensing
    Li, Jiaao
    Lv, Qunbo
    Zhang, Wenjian
    Zhu, Baoyu
    Zhang, Guiyu
    Tan, Zheng
    REMOTE SENSING, 2023, 15 (17)
  • [33] DESAT: A Distance-Enhanced Strip Attention Transformer for Remote Sensing Image Super-Resolution
    Mao, Yujie
    He, Guojin
    Wang, Guizhou
    Yin, Ranyu
    Peng, Yan
    Guan, Bin
    REMOTE SENSING, 2024, 16 (22)
  • [34] HCT: a hybrid CNN and transformer network for hyperspectral image super-resolution
    Wu, Huapeng
    Wang, Chenyun
    Lu, Chenyang
    Zhan, Tianming
    MULTIMEDIA SYSTEMS, 2024, 30 (04)
  • [35] LHDACT: Lightweight Hybrid Dual Attention CNN and Transformer Network for Remote Sensing Image Change Detection
    Song, Xinyang
    Hua, Zhen
    Li, Jinjiang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [36] Lightweight Remote-Sensing Image Super-Resolution via Attention-Based Multilevel Feature Fusion Network
    Wang, Hongyuan
    Cheng, Shuli
    Li, Yongming
    Du, Anyu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61 : 1 - 15
  • [37] HYBRID CONVOLUTION-TRANSFORMER FOR LIGHTWEIGHT SINGLE IMAGE SUPER-RESOLUTION
    Li, Jiuqiang
    Ke, Yutong
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 2395 - 2399
  • [38] SWCGAN: Generative Adversarial Network Combining Swin Transformer and CNN for Remote Sensing Image Super-Resolution
    Tu, Jingzhi
    Mei, Gang
    Ma, Zhengjing
    Piccialli, Francesco
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 5662 - 5673
  • [39] UNSUPERVISED REMOTE SENSING IMAGE SUPER-RESOLUTION USING CYCLE CNN
    Wang, Pengrui
    Zhang, Haopeng
    Zhou, Feng
    Jiang, Zhiguo
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 3117 - 3120
  • [40] MambaFormerSR: A Lightweight Model for Remote-Sensing Image Super-Resolution
    Zhi, Ruicong
    Fan, Xiaopei
    Shi, Jingye
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21