Systematic Optimization of Automated Phosphopeptide Enrichment for High-Sensitivity Phosphoproteomics

被引:16
作者
Bortel, Patricia [1 ,2 ]
Piga, Ilaria [3 ]
Koenig, Claire [3 ]
Gerner, Christopher [1 ,4 ,5 ]
Martinez-Val, Ana [3 ,6 ]
Olsen, Jesper, V [3 ]
机构
[1] Univ Vienna, Fac Chem, Dept Analyt Chem, Vienna, Austria
[2] Univ Vienna, Vienna Doctoral Sch Chem DoSChem, Vienna, Austria
[3] Univ Copenhagen, Novo Nordisk Fdn Ctr Prot Res, Fac Hlth & Med Sci, Prote Program, Copenhagen, Denmark
[4] Univ Vienna, Joint Metabolome Facil, Vienna, Austria
[5] Med Univ Vienna, Vienna, Austria
[6] Ctr Nacl Invest Cardiovasc Carlos III CNIC, Madrid 28029, Spain
关键词
SELECTIVE ENRICHMENT; METAL; IMAC; CHROMATOGRAPHY; STRATEGY; ROBUST;
D O I
10.1016/j.mcpro.2024.100754
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Improving coverage, robustness, and sensitivity is crucial for routine phosphoproteomics analysis by single-shot liquid chromatography-tandem mass spectrometry (LC-MS/MS) from minimal peptide inputs. Here, we systematically optimized key experimental parameters for automated on-bead phosphoproteomics sample preparation with a focus on low-input samples. Assessing the number of identified phosphopeptides, enrichment efficiency, site localization scores, and relative enrichment of multiply-phosphorylated peptides pinpointed critical variables influencing the resulting phosphoproteome. Optimizing glycolic acid concentration in the loading buffer, percentage of ammonium hydroxide in the elution buffer, peptide-to-beads ratio, binding time, sample, and loading buffer volumes allowed us to confidently identify >16,000 phosphopeptides in half-an-hour LC-MS/MS on an Orbitrap Exploris 480 using 30 mu g of peptides as starting material. Furthermore, we evaluated how sequential enrichment can boost phosphoproteome coverage and showed that pooling fractions into a single LC-MS/MS analysis increased the depth. We also present an alternative phosphopeptide enrichment strategy based on stepwise addition of beads thereby boosting phosphoproteome coverage by 20%. Finally, we applied our optimized strategy to evaluate phosphoproteome depth with the Orbitrap Astral MS using a cell dilution series and were able to identify >32,000 phosphopeptides from 0.5 million HeLa cells in half-an-hour LC-MS/MS using narrow- window data-independent acquisition (nDIA).
引用
收藏
页数:21
相关论文
共 51 条
[1]   Protein Aggregation Capture on Microparticles Enables Multipurpose Proteomics Sample Preparation [J].
Batth, Tanveer S. ;
Tollenaere, Maxim A. X. ;
Ruther, Patrick ;
Gonzalez-Franquesa, Alba ;
Prabhakar, Bhargav S. ;
Bekker-Jensen, Simon ;
Deshmukh, Atul S. ;
Olsen, Jesper, V .
MOLECULAR & CELLULAR PROTEOMICS, 2019, 18 (05) :1027-1035
[2]   A Compact Quadrupole-Orbitrap Mass Spectrometer with FAIMS Interface Improves Proteome Coverage in Short LC Gradients [J].
Bekker-Jensen, Dorte B. ;
Martinez-Val, Ana ;
Steigerwald, Sophia ;
Ruther, Patrick ;
Fort, Kyle L. ;
Arrey, Tabiwang N. ;
Harder, Alexander ;
Makarov, Alexander ;
Olsen, Jesper, V .
MOLECULAR & CELLULAR PROTEOMICS, 2020, 19 (04) :716-729
[3]   Rapid and site-specific deep phosphoproteome profiling by data-independent acquisition without the need for spectral libraries [J].
Bekker-Jensen, Dorte B. ;
Bernhardt, Oliver M. ;
Hogrebe, Alexander ;
Martinez-Val, Ana ;
Verbeke, Lynn ;
Gandhi, Tejas ;
Kelstrup, Christian D. ;
Reiter, Lukas ;
Olsen, Jesper V. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[4]   An Optimized Shotgun Strategy for the Rapid Generation of Comprehensive Human Proteomes [J].
Bekker-Jensen, Dorte B. ;
Kelstrup, Christian D. ;
Batth, Tanveer S. ;
Larsen, Sara C. ;
Haldrup, Christa ;
Bramsen, Jesper B. ;
Sorensen, Karina D. ;
Hoyer, Soren ;
Orntoft, Torben F. ;
Andersen, Claus L. ;
Nielsen, Michael L. ;
Olsen, Jesper V. .
CELL SYSTEMS, 2017, 4 (06) :587-+
[5]   Optimization of Experimental Parameters in Data-Independent Mass Spectrometry Significantly Increases Depth and Reproducibility of Results [J].
Bruderer, Roland ;
Bernhardt, Oliver M. ;
Gandhi, Tejas ;
Xuan, Yue ;
Sondermann, Julia ;
Schmidt, Manuela ;
Gomez-Varela, David ;
Reiter, Lukas .
MOLECULAR & CELLULAR PROTEOMICS, 2017, 16 (12) :2296-2309
[6]   Suspension Trapping-Based Sample Preparation Workflow for In-Depth Plant Phosphoproteomics [J].
Chen, Chin-Wen ;
Tsai, Chia-Feng ;
Lin, Miao-Hsia ;
Lin, Shu-Yu ;
Hsu, Chuan-Chih .
ANALYTICAL CHEMISTRY, 2023, 95 (33) :12232-12239
[7]   SIGNORApp: a Cytoscape 3 application to access SIGNOR data [J].
De Marinis, Ilaria ;
Lo Surdo, Prisca ;
Cesareni, Gianni ;
Perfetto, Livia .
BIOINFORMATICS, 2022, 38 (06) :1764-1766
[8]   Zirconium(IV)-IMAC Revisited: Improved Performance and Phosphoproteome Coverage by Magnetic Microparticles for Phosphopeptide Affinity Enrichment [J].
Diez, Ignacio Arribas ;
Govender, Ireshyn ;
Naicker, Previn ;
Stoychev, Stoyan ;
Jordaan, Justin ;
Jensen, Ole N. .
JOURNAL OF PROTEOME RESEARCH, 2021, 20 (01) :453-462
[9]   Phosphoproteomics of primary AML patient samples reveals rationale for AKT combination therapy and p53 context to overcome selinexor resistance [J].
Emdal, Kristina B. ;
Palacio-Escat, Nicolas ;
Wigerup, Caroline ;
Eguchi, Akihiro ;
Nilsson, Helen ;
Bekker-Jensen, Dorte B. ;
Ronnstrand, Lars ;
Kazi, Julhash U. ;
Puissant, Alexandre ;
Itzykson, Raphael ;
Saez-Rodriguez, Julio ;
Masson, Kristina ;
Blume-Jensen, Peter ;
Olsen, Jesper V. .
CELL REPORTS, 2022, 40 (06)
[10]   Comparison of Metal and Metal Oxide Media for Phosphopeptide Enrichment Prior to Mass Spectrometric Analyses [J].
Gates, Matthew B. ;
Tomer, Kenneth B. ;
Deterding, Leesa J. .
JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2010, 21 (10) :1649-1659