Modified partially randomized extended Kaczmarz method with residual for solving large sparse linear systems

被引:0
作者
Gao, Chen-Xiao [1 ]
Chen, Fang [1 ]
机构
[1] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100192, Peoples R China
关键词
Large sparse linear systems; Partially randomized extended Kaczmarz; method; Convergence rate; ITERATIVE ALGORITHMS; CONVERGENCE; RECONSTRUCTION;
D O I
10.1016/j.apnum.2025.02.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The partially randomized extended Kaczmarz method with residual is effective for solving large sparse linear systems. In this paper, an improved variant of this method is proposed and its expected exponential convergence rate is proved. In addition, numerical results show that this method can preform better than the partially randomized extended Kaczmarz method with residual.
引用
收藏
页码:215 / 222
页数:8
相关论文
共 29 条
[11]  
EGGERMONT PPB, 1981, LINEAR ALGEBRA APPL, V40, P37, DOI 10.1016/0024-3795(81)90139-7
[12]  
FEICHTINGER HG, 1992, P SOC PHOTO-OPT INS, V1818, P299, DOI 10.1117/12.131447
[13]   ALGEBRAIC RECONSTRUCTION TECHNIQUES (ART) FOR 3-DIMENSIONAL ELECTRON MICROSCOPY AND X-RAY PHOTOGRAPHY [J].
GORDON, R ;
BENDER, R ;
HERMAN, GT .
JOURNAL OF THEORETICAL BIOLOGY, 1970, 29 (03) :471-&
[14]   RECONSTRUCTION OF OBJECTS FROM RADIOGRAPHS AND LOCATION OF BRAIN TUMORS [J].
GUENTHER, RB ;
KERBER, CW ;
KILLIAN, EK ;
SMITH, KT ;
WAGNER, SL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1974, 71 (12) :4884-4886
[15]   Image reconstruction from a small number of projections [J].
Herman, G. T. ;
Davidi, R. .
INVERSE PROBLEMS, 2008, 24 (04)
[16]  
Herman GT, 2009, ADV PATTERN RECOGNIT, P1, DOI 10.1007/978-1-84628-723-7
[17]  
Kak A. C., 1988, Principles of computerized tomographic imaging, DOI 10.1118/1.1455742
[18]  
Karczmarz Stefan, 1937, Bulletin International de l'Academie Polonaise des Sciences et des Lettres, P355
[19]   Randomized Methods for Linear Constraints: Convergence Rates and Conditioning [J].
Leventhal, D. ;
Lewis, A. S. .
MATHEMATICS OF OPERATIONS RESEARCH, 2010, 35 (03) :641-654
[20]   Variant of greedy randomized Kaczmarz for ridge regression [J].
Liu, Yong ;
Gu, Chuan-Qing .
APPLIED NUMERICAL MATHEMATICS, 2019, 143 :223-246