Quantum algorithms for scientific computing

被引:2
作者
Au-Yeung, R. [1 ]
Camino, B. [2 ]
Rathore, O. [3 ]
Kendon, V [1 ]
机构
[1] Univ Strathclyde, Dept Phys, Glasgow City G4 0NG, Scotland
[2] UCL, Dept Chem, London WC1E 6BT, England
[3] Univ Durham, Dept Phys, Durham DH1 3LE, England
基金
英国科研创新办公室;
关键词
quantum algorithms; quantum computing; scientific computing; SMOOTHED PARTICLE HYDRODYNAMICS; LATTICE-BOLTZMANN METHOD; MONTE-CARLO; COMPUTATIONAL ADVANTAGE; TENSOR NETWORKS; SIMULATION; OPTIMIZATION; CHEMISTRY; SYSTEMS; SUPERCONDUCTIVITY;
D O I
10.1088/1361-6633/ad85f0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum computing promises to provide the next step up in computational power for diverse application areas. In this review, we examine the science behind the quantum hype, and the breakthroughs required to achieve true quantum advantage in real world applications. Areas that are likely to have the greatest impact on high performance computing (HPC) include simulation of quantum systems, optimization, and machine learning. We draw our examples from electronic structure calculations and computational fluid dynamics which account for a large fraction of current scientific and engineering use of HPC. Potential challenges include encoding and decoding classical data for quantum devices, and mismatched clock speeds between classical and quantum processors. Even a modest quantum enhancement to current classical techniques would have far-reaching impacts in areas such as weather forecasting, aerospace engineering, and the design of 'green' materials for sustainable development. This requires significant effort from the computational science, engineering and quantum computing communities working together.
引用
收藏
页数:51
相关论文
共 602 条
[1]   Read the fine print [J].
Aaronson, Scott .
NATURE PHYSICS, 2015, 11 (04) :291-293
[2]  
Aaronson S, 2011, ACM S THEORY COMPUT, P333
[3]   The power of quantum neural networks [J].
Abbas, Amira ;
Sutter, David ;
Zoufal, Christa ;
Lucchi, Aurelien ;
Figalli, Alessio ;
Woerner, Stefan .
NATURE COMPUTATIONAL SCIENCE, 2021, 1 (06) :403-409
[4]   Quantum Algorithm Implementations for Beginners [J].
Abhijith, J. ;
Adedoyin, Adetokunbo ;
Ambrosiano, John ;
Anisimov, Petr ;
Casper, William ;
Chennupati, Gopinath ;
Coffrin, Carleton ;
Djidjev, Hristo ;
Gunter, David ;
Karra, Satish ;
Lemons, Nathan ;
Lin, Shizeng ;
Malyzhenkov, Alexander ;
Mascarenas, David ;
Mniszewski, Susan ;
Nadiga, Balu ;
O'Malley, Daniel ;
Oyen, Diane ;
Pakin, Scott ;
Prasad, Lakshman ;
Roberts, Randy ;
Romero, Phillip ;
Santhi, Nandakishore ;
Sinitsyn, Nikolai ;
Swart, Pieter J. ;
Wendelberger, James G. ;
Yoon, Boram ;
Zamora, Richard ;
Zhu, Wei ;
Eidenbenz, Stephan ;
Bartschi, Andreas ;
Coles, Patrick J. ;
Vuffray, Marc ;
Lokhov, Andrey Y. .
ACM TRANSACTIONS ON QUANTUM COMPUTING, 2022, 3 (04)
[5]   Simulations of many-body Fermi systems on a universal quantum computer [J].
Abrams, DS ;
Lloyd, S .
PHYSICAL REVIEW LETTERS, 1997, 79 (13) :2586-2589
[6]   The quantum technologies roadmap: a European community view [J].
Acin, Antonio ;
Bloch, Immanuel ;
Buhrman, Harry ;
Calarco, Tommaso ;
Eichler, Christopher ;
Eisert, Jens ;
Esteve, Daniel ;
Gisin, Nicolas ;
Glaser, Steffen J. ;
Jelezko, Fedor ;
Kuhr, Stefan ;
Lewenstein, Maciej ;
Riedel, Max F. ;
Schmidt, Piet O. ;
Thew, Rob ;
Wallraff, Andreas ;
Walmsley, Ian ;
Wilhelm, Frank K. .
NEW JOURNAL OF PHYSICS, 2018, 20
[7]   Rydberg atom quantum technologies [J].
Adams, C. S. ;
Pritchard, J. D. ;
Shaffer, J. P. .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2020, 53 (01)
[8]   Adiabatic quantum computation is equivalent to standard quantum computation [J].
Aharonov, D ;
van Dam, W ;
Kempe, J ;
Landau, Z ;
Lloyd, S ;
Regev, O .
45TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2004, :42-51
[9]  
Aharonov D., 2001, P 33 ANN ACM S THEOR, P50, DOI DOI 10.1145/380752.380758
[10]  
Aharonov D., 2003, P 35 ANN ACM S THEOR, P20, DOI DOI 10.1145/780542.780546