Simultaneously enhanced in-plane and through-plane thermal conductivity of the bacterial cellulose composite prepared via a facile method

被引:2
作者
Tan, Jiani [1 ]
Xu, Zhen [1 ]
Ma, Tao [1 ]
Qi, Lixin [1 ]
Li, Jiayu [1 ]
Yuan, Fangli [2 ]
Ouyang, Yuge [1 ]
机构
[1] Beijing Technol & Business Univ BTBU, Coll Light Ind Sci & Engn, Beijing 100048, Peoples R China
[2] Chinese Acad Sci, Inst Proc Engn, State Key Lab Mesosci & Engn, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Hybrid; Sandwich-like structure; Bacterial cellulose; Thermal interface materials (TIMs); DESIGN; FILMS;
D O I
10.1016/j.jallcom.2025.178859
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The concurrent improvement of in-plane and through-plane thermal conductivity in composite films is of significant interest in the field of thermal interface materials (TIMs) for achieving efficient heat dissipation in electronic devices. Nevertheless, the majority of composite materials fabricated to date generally fail to exhibit high thermal conductivity in both vertical and horizontal directions. Herein, Si/GNPs/BC (bacterial cellulose) composite films with a sandwich-like structure have been prepared via a facile vacuum-assisted filtration (VAF) method. Zero-dimensional (0D) silicon (Si) particles dispersed between two-dimensional (2D) graphene nano- platelets (GNPs) establish thermal conductive pathways in the vertical direction, whereas the lateral arrangement of GNPs forms thermal conductive pathways in the horizontal direction. This configuration results in in- plane and through-plane thermal conductivities reaching 5.389 W/m center dot K and 1.794 W/m center dot K, respectively, representing a 3-fold and 10-fold enhancement over those of pure BC, respectively. In addition, the tensile strength of the 50Si/50GNPs/BC composite film is 13.5 MPa, which presents a 41 % increase over the pure BC film. Moreover, the flame retardancy and thermal stability of the composite films have also been improved, which could expand the application of Si/GNPs/BC composite films. Thus, the preparation of Si/GNPs/BC composite films provides a novel strategy for the development of high-performance thermal management materials.
引用
收藏
页数:9
相关论文
共 31 条
[11]   Lightweight thermal interface materials based on hierarchically structured graphene paper with superior through-plane thermal conductivity [J].
Gao, Jingyao ;
Yan, Qingwei ;
Lv, Le ;
Tan, Xue ;
Ying, Junfeng ;
Yang, Ke ;
Yu, Jinhong ;
Du, Shiyu ;
Wei, Qiuping ;
Xiang, Rong ;
Yao, Yagang ;
Zeng, Xiaoliang ;
Sun, Rong ;
Wong, Ching-Ping ;
Jiang, Nan ;
Lin, Cheng-Te ;
Dai, Wen .
CHEMICAL ENGINEERING JOURNAL, 2021, 419
[12]   Effect of electrically aligned polycrystalline diamond flakes on the through-plane thermal conductivity of heat conduction sheets [J].
Inaba, Masafumi ;
Seike, Seiya ;
Chen, Yingchen ;
Ichiki, Soichiro ;
Kubota, Yoshihiko ;
Ohmagari, Shinya ;
Nakano, Michihiko ;
Suehiro, Junya .
FUNCTIONAL DIAMOND, 2024, 4 (01)
[13]   In-Plane Thermal Conductivity Determination in Silicon on Insulator (SOI) structures through Thermoreflectance measurements [J].
Aubain, Max S. ;
Bandaru, Prabhakar R. .
THERMOELECTRIC MATERIALS 2010 - GROWTH, PROPERTIES, NOVEL CHARACTERIZATION METHODS AND APPLICATIONS, 2010, 1267
[14]   Highly oriented BN-based TIMs with high through-plane thermal conductivity and low compression modulus [J].
Yang, Rongjie ;
Wang, Yandong ;
Zhang, Zhenbang ;
Xu, Kang ;
Li, Linhong ;
Cao, Yong ;
Li, Maohua ;
Zhang, Jianxiang ;
Qin, Yue ;
Zhu, Boda ;
Guo, Yingying ;
Zhou, Yiwei ;
Cai, Tao ;
Lin, Cheng-Te ;
Nishimura, Kazuhito ;
Xue, Chen ;
Jiang, Nan ;
Yu, Jinhong .
MATERIALS HORIZONS, 2024, 11 (17) :4064-4074
[15]   Tree-ring structured phase change materials with high through-plane thermal conductivity and flexibility for advanced thermal management [J].
Jiang, Wan-jun ;
Wang, Rui-qing ;
Zhu, Ting-yu ;
Feng, Mai ;
Sun, De-xiang ;
Yang, Jing-hui ;
Qi, Xiao-dong ;
Wang, Yong .
CHEMICAL ENGINEERING JOURNAL, 2024, 479
[16]   Free-standing graphene aerogel with improved through-plane thermal conductivity after being annealed at high temperature [J].
Guo, Xiaoxiao ;
Cheng, Shujian ;
Yan, Bo ;
Li, Yile ;
Huang, Ruoyu ;
Li, Junxiao ;
Cai, Weiwei ;
Zhang, Yufeng ;
Zhou, Yinghui ;
Zhang, Xue-ao .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 608 :2407-2413
[17]   Boosting the in-plane thermal conductivity of nanofibrillated cellulose films: alignment engineering of cross-linked AlN whiskers [J].
Niu, Mengyang ;
Zhao, Zheng ;
Wang, Baokai ;
Yu, Chang ;
Li, Mengyi ;
Hu, Jiajun ;
Zhu, Lifeng ;
Hao, Xu ;
Wan, Shiqin ;
Yue, Ming ;
Xuan, Weiwei ;
Lu, Qipeng ;
Cao, Wenbin ;
Chen, Kexin ;
Wang, Qi .
JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (44) :23787-23797
[18]   Tailoring asymmetric filler arrangement by hollow glass microspheres towards polymer composites with improved through-plane thermal conductivity [J].
Jin, Yucong ;
Ye, Lijun ;
Chai, Yuchi ;
Hong, Jiahui ;
Li, Yongjin .
COMPOSITES SCIENCE AND TECHNOLOGY, 2023, 233
[19]   Magnetic-induced dynamically enhanced in-plane or out-of-plane thermal conductivity of BN/Ag NWs@Ni/epoxy composites [J].
Wang, Yang ;
Gu, An ;
Wei, Zhongqing ;
Zhao, Zhengbai ;
Cong, Hongmin ;
Yan, Chao .
CERAMICS INTERNATIONAL, 2023, 49 (18) :30248-30256
[20]   Robust polymer-based paper-like thermal interface materials with a through-plane thermal conductivity over 9 Wm-1K-1 [J].
Feng, Chang-Ping ;
Chen, Li-Bo ;
Tian, Guo-Liang ;
Bai, Lu ;
Bao, Rui-Ying ;
Liu, Zheng-Ying ;
Ke, Kai ;
Yang, Ming-Bo ;
Yang, Wei .
CHEMICAL ENGINEERING JOURNAL, 2020, 392