Finding influential nodes via graph embedding and hybrid centrality in complex networks

被引:0
|
作者
Ullah, Aman [1 ,2 ]
Meng, Yahui [1 ]
机构
[1] Guangdong Univ Petrochem Technol, Sch Sci, Maoming 525000, Guangdong, Peoples R China
[2] Guangdong Univ Petrochem Technol, Sch Comp Sci, Maoming 525000, Guangdong, Peoples R China
关键词
Influential nodes; Graph embedding; Centrality; Social complex networks; SPREADERS;
D O I
10.1016/j.chaos.2025.116151
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Finding influential nodes is essential for understanding the structure of complex networks and optimizing the dissemination of critical information. The key challenge lies in determining which nodes hold the most significance and how to identify and select a group of disseminators to maximize their influence. Therefore, researchers have proposed various approaches and centrality measures, each offering unique perspectives based on the network's topology. However, existing methods encounter inherent issues due to their sole consideration of node topology information. They also overlook the interconnectedness between nodes during the node filtering process, leading to imprecise evaluation results and limitations in terms of spread scale. In this paper, we introduce a novel scheme to tackle this problem in the context of social complex networks, termed graph embedding-based hybrid centrality (GEHC). Our proposed GEHC scheme starts by employing the DeepWalk graph embedding method to project the high-dimensional complex graph into a simpler, low-dimensional vector space. This mapping enables efficient calculation of the Euclidean distance between local pairs of nodes, allowing us to capture the proximity of nodes accurately. To further enhance the identification of influential nodes, we integrate network topology information and hybrid centrality indices. To evaluate the performance of our approach, we conduct extensive experiments on real-life networks using standard evaluation metrics. Experimental results on real-world networks demonstrate that our proposed scheme achieves a Kendall rank correlation coefficient close to 0.9, reflecting a strong correlation with the outcomes of the susceptible- infected-recovered model and validating its effectiveness in identifying influential nodes. The experimental results showcase the superiority of our approach inaccurately identifying nodes with high influence, surpassing the performance of traditional and recent methods in complex networks.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Identifying influential nodes in social networks: Centripetal centrality and seed exclusion approach
    Wang, Yan
    Li, Haozhan
    Zhang, Ling
    Zhao, Linlin
    Li, Wanlan
    CHAOS SOLITONS & FRACTALS, 2022, 162
  • [42] A modified efficiency centrality to identify influential nodes in weighted networks
    Wang, Yunchuan
    Wang, Shasha
    Deng, Yong
    PRAMANA-JOURNAL OF PHYSICS, 2019, 92 (04):
  • [43] Learning to rank influential nodes in complex networks via convolutional neural networks
    Waseem Ahmad
    Bang Wang
    Si Chen
    Applied Intelligence, 2024, 54 : 3260 - 3278
  • [44] Towards identifying influential nodes in complex networks using semi-local centrality metrics
    Zhang, Kun
    Zhou, Yu
    Long, Haixia
    Wang, Chaoyang
    Hong, Haizhuang
    Armaghan, Seyed Mostafa
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2023, 35 (10)
  • [45] Identifying influential nodes in complex networks: a semi-local centrality measure based on augmented graph and average shortest path theory
    Han-huai, Pan
    Lin-wei, Wang
    Hao, Liu
    Abdollahi, Mohammadjavad
    TELECOMMUNICATION SYSTEMS, 2025, 88 (01)
  • [46] Influential nodes ranking in complex networks: An entropy-based approach
    Zareie, Ahmad
    Sheikhahmadi, Amir
    Fatemi, Adel
    CHAOS SOLITONS & FRACTALS, 2017, 104 : 485 - 494
  • [47] Identifying influential nodes in complex networks based on global and local structure
    Sheng, Jinfang
    Dai, Jinying
    Wang, Bin
    Duan, Guihua
    Long, Jun
    Zhang, Junkai
    Guan, Kerong
    Hu, Sheng
    Chen, Long
    Guan, Wanghao
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 541
  • [48] Identifying Influential Nodes in Complex Networks Based on Local Neighbor Contribution
    Dai, Jinying
    Wang, Bin
    Sheng, Jinfang
    Sun, Zejun
    Khawaja, Faiza Riaz
    Ullah, Aman
    Dejene, Dawit Aklilu
    Duan, Guihua
    IEEE ACCESS, 2019, 7 : 131719 - 131731
  • [49] A Machine Learning Based Framework for Identifying Influential Nodes in Complex Networks
    Zhao, Gouheng
    Jia, Peng
    Huang, Cheng
    Zhou, Anmin
    Fang, Yong
    IEEE ACCESS, 2020, 8 : 65462 - 65471
  • [50] Identifying Influential Nodes in Complex Networks Based on Local Effective Distance
    Zhang, Junkai
    Wang, Bin
    Sheng, Jinfang
    Dai, Jinying
    Hu, Jie
    Chen, Long
    INFORMATION, 2019, 10 (10)