An adaptive traffic signal control scheme with Proximal Policy Optimization based on deep reinforcement learning for a single intersection

被引:1
|
作者
Wang, Lijuan [1 ,2 ]
Zhang, Guoshan [1 ]
Yang, Qiaoli [2 ]
Han, Tianyang [3 ]
机构
[1] Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China
[2] Lanzhou Jiaotong Univ, Sch Automat & Elect Engn, Lanzhou 730070, Gansu, Peoples R China
[3] Univ Tokyo, Grad Sch Engn, Dept Civil Engn, 7-3-1 Hongo,Bunkyo Ku, Tokyo 1138656, Japan
基金
中国国家自然科学基金;
关键词
Traffic signal control; Proximal policy optimization; Deep reinforcement learning; SYSTEM;
D O I
10.1016/j.engappai.2025.110440
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Adaptive traffic signal control (ATSC) is an important means to alleviate traffic congestion and improve the quality of road traffic. Although deep reinforcement learning (DRL) technology has shown great potential in solving traffic signal control problems, the state representation and reward design, as well as action interval time, still need to be further studied. The advantages of policy learning have not been fully applied in TSC. To address the aforementioned issues, we propose a DRL-based traffic signal control scheme with Poximal Policy Optimization (PPO-TSC). We use the waiting time of vehicles and the queue length of lanes represented the spatiotemporal characteristics of traffic flow to design the simplified traffic states feature vectors, and define the reward function that is consistent with the state. Additionally, we compare and analyze the performance indexes obtained by various methods using action intervals of 5s, 10s, and 15s. The algorithm is implemented based on the Actor-Critic architecture, using the advantage estimation and the clip mechanism to constrain the range of gradient updates. We validate the proposed scheme at a single intersection in Simulation of Urban MObility (SUMO) under two different traffic demand patterns of flat traffic and peak traffic. The experimental results show that the proposed method is significantly better than other compared methods. Specifically, PPOTSC demonstrates a reduction of 24% in average travel time (ATT), a decrease of 45% in the average time loss (ATL), and an increase of 16% in average speed (AS) compared with the existing methods under peak traffic condition.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Distributed Traffic Signal Control with Fairness Using Deep Reinforcement Learning
    Shirasaka, Shogo
    Kodama, Naoki
    Harada, Taku
    2023 SICE INTERNATIONAL SYMPOSIUM ON CONTROL SYSTEMS, SICE ISCS, 2023, : 117 - 122
  • [42] Deep reinforcement learning and adaptive policy transfer for generalizable well control optimization
    Wang, Zhongzheng
    Zhang, Kai
    Zhang, Jinding
    Chen, Guodong
    Ma, Xiaopeng
    Xin, Guojing
    Kang, Jinzheng
    Zhao, Hanjun
    Yang, Yongfei
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 217
  • [43] Uniformity of markov elements in deep reinforcement learning for traffic signal control
    Ye, Bao-Lin
    Wu, Peng
    Li, Lingxi
    Wu, Weimin
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (06): : 3843 - 3866
  • [44] A Deep Reinforcement Learning Approach to Traffic Signal Control With Temporal Traffic Pattern Mining
    Ma, Dongfang
    Zhou, Bin
    Song, Xiang
    Dai, Hanwen
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (08) : 11789 - 11800
  • [45] Deep reinforcement learning and adaptive policy transfer for generalizable well control optimization
    Wang, Zhongzheng
    Zhang, Kai
    Zhang, Jinding
    Chen, Guodong
    Ma, Xiaopeng
    Xin, Guojing
    Kang, Jinzheng
    Zhao, Hanjun
    Yang, Yongfei
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 217
  • [46] Adaptive Broad Deep Reinforcement Learning for Intelligent Traffic Light Control
    Zhu, Ruijie
    Wu, Shuning
    Li, Lulu
    Ding, Wenting
    Lv, Ping
    Sui, Luyao
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (17): : 28496 - 28507
  • [47] A Stochastic Adaptive Traffic Signal Control Model Based on Fuzzy Reinforcement Learning
    Wen, Kaige
    Yang, Wugang
    Qu, Shiru
    2010 2ND INTERNATIONAL CONFERENCE ON COMPUTER AND AUTOMATION ENGINEERING (ICCAE 2010), VOL 5, 2010, : 467 - 471
  • [48] Minimize Pressure Difference Traffic Signal Control Based on Deep Reinforcement Learning
    Yu, Pengcheng
    Luo, Jie
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 5493 - 5498
  • [49] Design of traffic signal automatic control system based on deep reinforcement learning
    Wang, Haoyu
    International Journal of Wireless and Mobile Computing, 2024, 27 (04) : 381 - 392
  • [50] A review of reinforcement learning applications in adaptive traffic signal control
    Miletic, Mladen
    Ivanjko, Edouard
    Greguric, Martin
    Kusic, Kresimir
    IET INTELLIGENT TRANSPORT SYSTEMS, 2022, 16 (10) : 1269 - 1285