Effect of the interaction anisotropy of the nanoparticle surface on the glass transition temperature of polymer nanocomposites

被引:0
作者
Ueda, Taisei [1 ]
Kobayashi, Yusei [1 ]
Ikeda, Takahiro [1 ,2 ]
Yamakawa, Masashi [1 ]
机构
[1] Kyoto Inst Technol, Fac Mech Engn, Sakyo Ku, Kyoto 6068585, Japan
[2] Kyoto Inst Technol, Ctr Possible Futures, Sakyo Ku, Kyoto 6068585, Japan
关键词
Polymer nanocomposite; Glass transition temperature; Interaction anisotropy; Janus nanoparticles; Molecular dynamics; MOLECULAR-DYNAMICS SIMULATION; JANUS; SHEAR;
D O I
10.1016/j.polymer.2025.128188
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The glass transition temperature, Tg, is one of the most significant factors by which the system is characterized because most of the properties of polymer nanocomposites (PNCs) vary considerably below and above the Tg of PNCs. We performed molecular dynamics simulations on PNCs filled with diblock or triblock Janus nanoparticles (JNPs) to investigate the effect of the interaction anisotropy of the NP surface on Tg by comparing with the results of the case of homogeneous nanoparticles (HNPs) with the same averaged polymer-NP coupling strength over the NP surface. The results revealed that the Tg can be shifted to lower values by introducing anisotropy in the surface interactions, in contrast to NPs with isotropic interactions. Moreover, we investigated the contribution of diffusion coefficients of polymer to the Tg. Adding diblock JNPs (DJNPs) enhanced diffusion of polymers when compared with adding HNPs, thereby lowering the Tg. Comparing the diblock and triblock JNP (TJNP) cases, we found that the polymer diffusion of TJNP cases is slower than that of DJNP cases because the TJNPs can make indirect contact via the polymer chains around the entire NP surface.
引用
收藏
页数:7
相关论文
共 54 条
[1]   Carbon nanotube-reinforced polymer nanocomposites for sustainable biomedical applications: A review [J].
Abubakre, Oladiran Kamardeen ;
Medupin, Rasaq Olawale ;
Akintunde, Idris Babatunde ;
Jimoh, Oladejo Tijani ;
Abdulkareem, Ambali Saka ;
Muriana, Rasheed Aremu ;
James, John Adeniran ;
Ukoba, Kingsley O. ;
Jen, Tien -Chien ;
Yoro, Kelvin O. .
JOURNAL OF SCIENCE-ADVANCED MATERIALS AND DEVICES, 2023, 8 (02)
[2]  
Allen MP., 1991, COMPUTER SIMULATION, DOI DOI 10.1007/BF00646086
[3]   HOOMD-blue: A Python']Python package for high-performance molecular dynamics and hard particle Monte Carlo simulations [J].
Anderson, Joshua A. ;
Glaser, Jens ;
Glotzer, Sharon C. .
COMPUTATIONAL MATERIALS SCIENCE, 2020, 173
[4]   String-like collective motion in the α- and β-relaxation of a coarse-grained polymer melt [J].
Betancourt, Beatriz A. Pazmino ;
Starr, Francis W. ;
Douglas, Jack F. .
JOURNAL OF CHEMICAL PHYSICS, 2018, 148 (10)
[5]   Fragility and cooperative motion in a glass-forming polymer-nanoparticle composite [J].
Betancourt, Beatriz A. Pazmino ;
Douglas, Jack F. ;
Starr, Francis W. .
SOFT MATTER, 2013, 9 (01) :241-254
[6]   Review on nanocomposites based on aerospace applications [J].
Bhat, Aayush ;
Budholiya, Sejal ;
Raj, Sakthivel Aravind ;
Sultan, Mohamed Thariq Hameed ;
Hui, David ;
Shah, Ain Umaira Md ;
Safri, Syafiqah Nur Azrie .
NANOTECHNOLOGY REVIEWS, 2021, 10 (01) :237-253
[7]   Monte Carlo and molecular dynamics simulation of the glass transition of polymers [J].
Binder, K ;
Baschnagel, J ;
Bennemann, C ;
Paul, W .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1999, 11 (10A) :A47-A55
[8]   MOLECULAR-DYNAMICS OF POLYMERIC SYSTEMS [J].
BISHOP, M ;
KALOS, MH ;
FRISCH, HL .
JOURNAL OF CHEMICAL PHYSICS, 1979, 70 (03) :1299-1304
[9]   Ongoing progress on novel nanocomposite membranes for the separation of heavy metals from contaminated water [J].
Castro-Munoz, Roberto ;
Loreti Gonzalez-Melgoza, Luisa ;
Garcia-Depraect, Octavio .
CHEMOSPHERE, 2021, 270
[10]   Directed self-assembly of a colloidal kagome lattice [J].
Chen, Qian ;
Bae, Sung Chul ;
Granick, Steve .
NATURE, 2011, 469 (7330) :381-384